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Abstract. In these experiments, the electric charge carried
by single particles ejected from the surface of a graupel par-
ticle growing by riming was measured. Simulated graupel
pellets were grown by accretion of supercooled water drops,
at temperatures ranging from−2 to −10◦C in a wind tun-
nel at air velocities between 5 and 10 m s−1, with the goal
of studying the charging of graupel pellets under conditions
of secondary ice crystal production (Hallett-Mossop mecha-
nism). The graupel, and induction rings upstream and down-
stream of the graupel, were connected to electrometers and
analyzing circuits of sufficient sensitivity and speed to mea-
sure, correlate and display individual charging events. The
results suggest that fewer than 1% of the ejected particles
carry a measurable electric charge (>2 fC). Further, it was
observed that the graupel pellets acquire a positive charge
and the average charge of a single splinter ejected is−14 fC.
This mechanism of ejection of charged particles seems ad-
equate to account for a positive charge of around 1 pC that
individual precipitation particles ofmm-size could acquire
in the lower part of the cloud, which in turn could contribute
to the lower positive charge region of thunderstorms.

1 Introduction

Hallett and Mossop(1974) andMossop and Hallett(1974)
observed that ice splinters were ejected during the formation
of rime by the accretion of supercooled droplets on a cylinder
of diameter 2.4 mm at 3 m s−1 , providing that the air temper-
ature is between−3 and−8◦C. In addition,Mossop (1976)
showed that the ice splinters are produced only when rime
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grows in a supercooled cloud containing water droplets with
a spectrum that extends beyond 24 µm diameter andMossop
(1978) found a requirement for the presence of both droplets
larger than 24 µm and smaller than 13 µm diameter.

The ejection of the splinters is thought to be produced
when the supercooled droplets freeze on impact with the ac-
creted rime.Chourlarton et al. (1978, 1980) proposed that
under suitable conditions, the freezing droplets form a shell
of ice which can shatter under the high stresses involved
caused by the effects of expansion upon freezing. The ice
surface may break up into fragments, or a spicule of material
may be formed through which liquid is ejected that rapidly
freezes.Dong and Hallett(1989) proposed another mecha-
nism; they suggested that the thermal gradients experienced
by an accreted droplet can result in thermal shock and shat-
tering of ice during freezing. The possible reason for the
high temperature cut-off at−3◦C is that at high tempera-
tures, the freezing time is long so the droplet has time to
spread on the rimer before freezing and it does not produce
a shell so does not fragment.Dong and Hallett(1989) point
out that the spreading is particularly effective at temperatures
above−3◦C because the liquid like layer on the ice surface
is thicker at higher temperatures. While for the low temper-
ature cut-off at−8◦C, Griggs and Choularton(1983) say
that at temperatures below−9◦C several ice dendrites cross
the liquid droplet from the substrate side to the outside which
initiates freezing at several points on the outer surface of the
droplet so that the freezing front moves inwards, making the
shell very strong, so it does not fragment;Dong and Hallett
(1989) suggest smaller and more concentrated air bubbles

will be formed at lower temperatures because the solubility
of air in water increases at lower temperatures (more air to
come out on freezing). The air makes the ice more plastic
and so less likely to fracture andMason (1996) points out
that on freezing, the droplet expands (by the same amount
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Fig. 1. General layout of the cloud chamber and the associated equipment used in this study.
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Fig. 1. General layout of the cloud chamber and the associated equipment used in this study.

at all temperatures). He suggests that at low temperatures
the shell thickness is greater than the radial expansion so the
shell is not ruptured. At temperatures above−8◦C the shell
thickness is less than the radial expansion so the expansion
causes the shell to rupture.

Regardless of which mechanism is correct, the net effect
is to produce a large number of small ice particles that could
grow very rapidly by the diffusion of local water vapour and
form ice crystals that can in turn accrete smaller droplets
thus continuing the multiplication process. Evidence that the
Hallett-Mossop (H-M) mechanism is an important source of
ice particles in clouds has been reported in field measure-
ments byHallett et al. (1978) in Florida cumuli andHarris-
Hobbs and Cooper(1987) in cumuli in Montana, Florida and
California.

Despite the evident importance of the H-M mechanism
for secondary ice crystal production in clouds, there is only
one work in the literatureHallett and Saunders(1979) that
describes studies of the possibility that the ejected ice frag-
ments were electrically charged and that they can contribute
to thunderstorm electrification.Hallett and Saunders(1979)
determined in an indirect way the electric charge of the
ejected fragments by measuring the charging current to a
riming rod moving through a cloud of supercooled water
droplets under conditions of secondary ice crystal produc-
tion. The measurements were performed at−4◦C with air
velocities between 1 and 3.5 m s−1. Saunders(2008) con-
cluded that the magnitude of the charges on the fragments
was too small to be able to account for the observed electri-

fication rates in thunderstorms.Hallett and Saunders(1979)
observed that in the presence of liquid cloud, the ice crystals
grew rapidly and when these larger crystals collided with a
riming ice surface, then substantial charges were separated.
The results of this study led to subsequent research of graupel
charging during ice crystal collisions.

In this study we extend the laboratory experiments per-
formed byHallett and Saunders(1979) and provide direct
measurements of the electric charge carried by single parti-
cles ejected from the surface of a simulated graupel growing
by riming. The experimental evidence shows that the grau-
pel pellets acquire a positive charge and the average charge
of single splinter ejected is−14×10−15C. Further, it was
observed that fewer than 1% of the ejected particles carry
a measurable electric charge. The results obtained are used
to evaluate the contribution that the ejection of charged par-
ticles can make to cloud electrification, in particular to the
lower positive charge region.

2 Experimental

The experiments were carried out by using an open circuit
wind tunnel which was assembled in a cold room of height
2.5 m and floor area 2×2 m2. Figure1 shows the general lay-
out of the apparatus. The experimental devices used in this
work are similar to those used byAvila and Pereyra(2000),
Pereyra et al.(2000, 2008), Pereyra and Avila(2002), and
Bürgesser et al.(2006).
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Fig. 2. Cloud droplet size distribution used in the experiments. The mean diameter is 21 µm.

Fig. 3. Production of charged fragments during riming for a cloud temperature of (−7.6 ± 0.2)◦C, EW =

(0, 61± 0.09) g m−3 and velocity 6.8m s−1. Each bar represents the charge of one individual event.
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Fig. 2. Cloud droplet size distribution used in the experiments. The
mean diameter is 21 µm.

Riming occurs on a fixed brass cylinder of radius 2 mm
(target), which is placed in the measuring tube perpendicu-
lar to the airflow. The measuring tube is a cylindrical tube
of section 33 mm diameter connected to an air pump which
controls the velocity of the droplets past the target.

The water droplets used to rime the target were generated
by water vapour condensation from a boiler located inside the
cold room; the boiler output fed a small cubic cloud cham-
ber of 0.5 m side, whose lower vents allow the mixing of
the cloud droplets with cold air. The cloud chamber is con-
nected to the measuring tube through a vertical precooling
tower∼2 m high allowing the cloud of droplets to reach am-
bient temperature before entering the working section. Fig-
ure 2 shows the histogram of the droplet size distribution
used in the measurements; the spectrum extends to 60 µm
with a mean diameter (dm) 21 µm. The cloud droplet spectra
were obtained by taking cloud samples with a glass strip of
4 mm width covered with a thin film of 5% formvar solution.
Several cloud samples were taken at the position of the target
for different temperatures. It can be observed that 30% of the
droplets had diameter larger than 24 µm.

The effective liquid water content (EW ) is defined as the
portion of the liquid water content (LWC) captured by the tar-
get on account of its collision efficiency, thenEW depends
on the droplet and collector size and their relative velocity.
The effective liquid water content was experimentally deter-
mined by weighing the deposit of rime collected on the rod
target (1m) during a given time period (1t) and then using
the equation:

EW =
1m

1t V A
(1)

whereA is the cross-sectional area of the target, exposed to
an air flux of velocityV . The mass of the rime was deter-
mined by using a balance with an error of 0.1%.

The air temperature was measured by using a calibrated
thermistor placed in the wind tunnel downstream of the tar-
get. It was continuously monitored throughout the runs. The
rime temperature was raised above the ambient temperature
by the release of the latent heat of fusion, this tempera-
ture was calculated fromEW using the Macklin and Payne
(Macklin and Payne, 1967) equation, which considers the
balance between the rate at which heat is released by the
freezing droplets and is exchanged with the environment by
forced convection and sublimation. The effects of the surface
roughness on the heat balance equation were considered by
using the corrections given byAvila et al. (1999) andCastel-
lano et al. (1999). The speed of the airflow past the target
was controlled by adjusting the power to an air pump and
was determined by using a Pitot-tube type anemometer with
an error of±0.5 m s−1. The air speed was measured in aux-
iliary experiments and the anemometer probe was inserted
into the measuring section about 5 cm below the target.

The electronic system for measuring and evaluating single
events of charged particles ejected from the rimer was similar
to that used byAvila et al. (2003) and consisted of electrom-
eters connected to the target and induction rings placed up-
stream and downstream of the target, as shown in Fig. 1. The
electrometers are sensitive charge amplifiers capable of de-
tecting electric charges larger than 2 fC (2×10−15C, which
gives an output signal of 100 mV) and sufficiently fast to
measure, correlate and display individual charging events.
Examples of waveforms caused by an event of charge sepa-
ration by ejection can be seen in Fig. 2 ofAvila et al. (2003).
The downstream ring was used to identify charged particles
originating at the graupel; thus, a genuine event should show
equal charges of opposite sign on the two interacting parti-
cles, both charges were measured and correlated. The ex-
periment was designed to exclude spurious charging events
from analysis; in fact, charged particles entering the appara-
tus could be excluded from analysis by the signal from the
upstream induction ring.

In order to diminish the number of spurious events (typi-
cally between 5 and 20 events per run), the measuring section
was completely cleaned at the beginning of each run and the
cloud chamber and the precooling tower (Fig. 1) were de-
frosted after 3–4 runs. We did not observe any systematic
difference between the first and last experiments.

3 Results and discussions

According toHallett and Mossop(1974) andMossop and
Hallett (1974) and subsequent work in this area, splinter
production takes place at cloud temperatures between−3◦C
and −8◦C; for this reason, the range of temperature cho-
sen for the present investigation spans−2◦C to −10◦C to
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Fig. 2. Cloud droplet size distribution used in the experiments. The mean diameter is 21 µm.
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Fig. 3. Production of charged fragments during riming for a cloud
temperature of(−7.6±0.2)◦C, EW =(0,61±0.09) g m−3 and ve-
locity 6.8 m s−1. Each bar represents the charge of one individual
event.

ensure complete coverage of the range of temperature where
the Hallett-Mossop mechanism is active. The liquid water
content was also varied in a range which is characteristic of
the conditions existing within real clouds.

Saunders and Hosseini(2001) conducted laboratory ex-
periments in which simulated graupel pellets were moved
on a rotating frame through a cloud of supercooled droplets
to become covered in rime ice. Ejected ice fragments were
counted after they grew to visible sizes in the cloud. They
studied the effect of rimer velocity on the splinter produc-
tion in the range 1.5–12 m s−1, and found that the maximum
secondary ice particle ejection occurs at 6 m s−1. The cur-
rent experiments were performed at four different velocities
around 6 m s−1 (5.3, 6.8, 8 and 9.4 m s−1) in order to get the
most favorable production of splinters.

Each one of the current experiments lasted 500 s and was
started with the target clean of ice. The riming process
occurred during the first 300 s and then the cloud droplet
supply was cut off while the airflow remained for up to
200 s (non-riming condition). Typically, the charged parti-
cles ejected from the target appeared after the first minute
of starting the riming process and significant charge sepa-
ration was observed only under riming conditions. Figure3
shows the production of charged particles from the graupel as
a function of time for a cloud temperature of (−7.6±0.2)◦C,
EW = (0.61±0.09) g m−3 and velocity 6.8 m s−1. Each bar
represents the charge on an ejected crystal, which was mainly
negative, as can be seen from the figure. Some charged parti-
cles were ejected few seconds (<20 s) after vapor supply was
cut off (Fig. 3).

One of the most remarkable results of this study is the low
number of charged particles permg of rime accreted found
(∼0.5 particles permg rime) in comparison to the splinter
production by the H-M mechanism as determined by sev-

eral authors. For instance, the number of splinters produced
permg of rime accreted measured bySaunders and Hosseini
(2001) is at least two orders of magnitude larger than the

number of charged splinters measured in this work. The most
important difference between the present study and the ear-
lier reports is that in the current study the accretion of su-
percooled droplets was produced on a fixed target, instead
of a rotating one as used in previous work. However, there
is no reason to assume that this difference in the measure-
ment technique could be the cause of the difference between
the results. Likely, most of the ejected particles by the H-M
mechanism are too small to carry a detectable electric charge;
only a few of them have suitable size to carry a charge on the
order of 1 fC. Indeed,Bader et al.(1974) found evidence that
sub-micron particles of ice are produced when water droplets
freeze on riming, these splinters can be as small as 0.2 µm
diameter and they also observed that appreciable numbers
of small splinters are produced. It is important to remark
that they used a low impact velocity and the water droplets
were appreciably larger than those normally encountered in
clouds. The maximum charge that a liquid drop of 0.2 µm di-
ameter may hold before disruption is around 0.5 fC as given
by the Rayleigh Limit (Rayleigh, 1882); this magnitude of
charge cannot be detected by the amplifier used in this study.
Therefore, the results seem to indicate that only a small per-
centage of splinters produced by the H-M mechanism (∼1%)
are ejected with electric charge of magnitude above 1 fC.

Table 1 lists the values of the variables used in each run:
ambient temperature (Ta), rime temperature (Tr ), effective
liquid water content (EW ), velocity (V ), number of charged
particles produced in the run (N ), total charge (Q) acquired
by the graupel per minute and the percentage (%) of the
ejected particles with negative charge. By considering all the
experiments reported in Table 1, it was observed that the 93%
of the ejected charged particles were negatively charged.

The results from Table 1 show that forTa>−6◦C the
production of charged particles was substantially lower than
that obtained forTa<−6◦C. Secondary ice crystal produc-
tion by the Hallett- Mossop mechanism has been observed at
Ta>−6◦C by many authors, which confirms that these parti-
cles could be uncharged or with undetectable electric charge.

The ice particle production from freezing droplets is gov-
erned by the way in which they are accreted and also by
the environmental conditions. As can be seen from Table 1,
the number of charged particles produced per run was highly
variable, indicating that the ejection of charged particles de-
pends on microscopic processes that cannot be completely
described by environmental variables such asTa , EW andV .
From the rime temperatures listed in Table 1, it is possible to
discern, using theMacklin and Payne(1967) heat balance
equation, that the graupel was in the dry growth regime in all
experiments.

The results of all the experiments are illustrated in Fig.4,
where the charging rate of the graupel (Q) is plotted as a
function of cloud temperature and the rate of rime accretion,
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Table 1. Values of the variables in each run: ambient temperature (Ta), rime temperature (Tr ), effective liquid water content (EW ), velocity
(V ), number of charged particles produced in the run (N ), total charge (Q) acquired by the graupel per minute and the percentage (%) of the
ejected particles with negative charge.

Ta (◦C) Tr (◦C) EW (g m−3) V (m s−1) N Q (fC min−1) % (−)

−2.0±0.1 −1,2 0.59±0.07 8.0±0.5 0 0
−2.1±0.2 −1,3 0.60±0.08 6.8±0.5 0 0
−2.2±0.3 −1,7 0.33±0.04 8.0±0.5 0 0
−2.4±0.2 −1,8 0.36±0.04 9.4±0.5 0 0
−3.4±0.5 −2,1 1.03±0.1 6.8±0.5 0 0
−3.7±0.5 −2,9 0.59±0.1 6.8±0.5 1 26 100
−3.8±0.5 −2,9 0.61±0.1 6.8±0.5 0 0
−4.0±0.2 −3,5 0.29±0.1 6.8±0.5 0 0
−4.3±0.3 −2,6 1.3±0.2 6.8±0.5 0 0
−4.3±0.4 −2,4 1.3±0.2 9.4±0.5 0 0
−4.4±0.8 −3,2 0.75±0.09 9.4±0.5 1 7 100
−4.6±0.3 −3,5 0.9±0.2 5.3±0.5 0 0
−4.8±0.8 −3,8 0.63±0.09 8.0±0.5 3 11 100
−4.8±0.9 −4,1 0.43±0.07 5.3±0.5 0 0
−5.0±0.3 −4,1 0.57±0.08 6.8±0.5 1 7 100
−5.0±0.4 −4,2 0.42±0.05 9.4±0.5 0 0
−5.1±0.2 −4,6 0.23±0.03 8.0±0.5 0 0
−5.2±0.8 −4,8 0.17±0.02 6.8±0.5 0 0
−5.3±0.1 −4,9 0.18±0.03 5.3±0.5 0 0
−6.0±0.7 −4,5 1.08±0.1 6.8±0.5 6 21 100
−6.2±0.5 −4,9 0.81±0.1 6.8±0.5 7 56 86
−6.2±0.5 −4,9 0.87±0.1 6.8±0.5 4 13 100
−6.3±0.4 −5,2 0.69±0.1 6.8±0.5 20 71 100
−6.7±0.5 −5,7 0.57±0.1 6.8±0.5 5 25 100
−6.9±0.4 −6,2 0.35±0.1 6.8±0.5 5 6 80
−6.9±0.6 −5,1 1.2±0.2 8.0±0.5 1 4 100
−7.1±0.5 −5,6 1.0±0.1 6.8±0.5 1 3 100
−7.1±0.5 −5,8 0.9±0.1 5.3±0.5 0 0
−7.1±1.2 −5,7 0.8±0.1 9.4±0.5 2 11 100
−7.5±0.3 −6,3 0.7±0.1 8.0±0.5 5 27 100
−7.6±0.2 −6,5 0.61±0.09 6.8±0.5 32 102 97
−7.8±0.2 −6,9 0.55±0.09 5.3±0.5 1 5 100
−7.8±0.5 −6,9 0.40±0.05 8.0±0.5 17 58 100
−7.9±0.3 −7.0 0.41±0.05 9.4±0.5 8 28 88
−8.1±0.1 −7,4 0.28±0.04 6.8±0.5 11 30 100
−8.2±0.1 −7,6 0.23±0.04 5.3±0.5 5 9 80
−8.3±0.4 −6,4 1.3±0.1 6.8±0.5 20 38 70
−8.5±0.4 −7,3 0.7±0.1 6.8±0.5 11 97 91
−8.9±0.3 −8,3 0.24±0.1 6.8±0.5 6 32 84
−9.0±0.9 −7,1 1.2±0.2 8.0±0.5 6 10 67
−9.4±0.4 −7,9 0.9±0.1 6.8±0.5 19 57 85
−9.4±0.9 −8,2 0.62±0.07 9.4±0.5 17 59 88
−9.6±0.3 −8.0 1.1±0.2 5.3±0.5 10 31 100
−9.6±1.4 −8,0 0.9±0.1 8.0±0.5 15 96 100
−9.7±0.2 −8,5 0.64±0.09 6.8±0.5 39 123 95
−9.9±0.2 −9,1 0.40±0.06 5.3±0.5 10 34 100

RAR =EW×V , which represents the mass of rime ac-
creted on the graupel per unit time and unit surface area
(Eq. 1). The error bars indicate the range of values which
have been averaged in deriving the plotted points. Fig-

ure 4a shows, once again, that the charging rate of the
graupel was very low atTa>−6◦C; while for temperatures
−6◦C< Ta<−10◦C the charging rate increases as the tem-
perature decreases. Figure4b seems to indicate that the range
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Fig. 4. Plots of the charging rate of the graupel (Q) as a function of cloud temperature and the rate of rime

accretion.

Fig. 5. Plot of the total charge acquired by the graupel (Qt) as a function of the number of charged particles

produced (N ). The solid line represents the linear fit of the data.
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Fig. 4. Plots of the charging rate of the graupel (Q) as a function of
cloud temperature and the rate of rime accretion.

4 g m−2 s−1<RAR<8 g m−2 s−1 is the most suitable for the
production of charged particles during the riming process.

Figure5 displays the trend of the total charge acquired by
the graupel (Qt ) during each run as a function of the number
of charged particles produced in the corresponding run (N ).
Although an important dispersion of the data is shown in the
graph, a linear trend is observed between the total charge and
the number of ejected particles. If the total charge is directly
proportional to the number of particles ejected, then

Qt =q N (2)

whereq represents the average charge separated per event,
which can be calculated from the slope of the fitted line in
Fig. 5, giving a value of 14 fC. Since all the experimental data
were used in this graph, the result suggests thatq is roughly
independent ofT , EW andV . Therefore, the variations of
Q with Ta and RAR observed in Fig. 4 are not consequences
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Fig. 5. Plot of the total charge acquired by the graupel (Qt ) as
a function of the number of charged particles produced (N ). The
solid line represents the linear fit of the data.

of the variations inq but the variations inN and the increase
in charge in Fig.4a is simply indicative of an increase in
the number of charged particles ejected at lower tempera-
tures and does not imply that multiplication itself increases
at lower temperatures.Foster and Hallett(1982) reported a
wider range of temperatures for multiplication, between−3
and−11◦C.

There are few previous studies which have reported mea-
surements of charge separation for ejection of particles from
the surface of graupel growing by accretion of supercooled
water droplets. Hallett and Saunders(1979) measured
charge separation under conditions of secondary ice crys-
tal production. Although they concluded that this mecha-
nism is unsuitable to explain the observed electrification rates
in thunderstorms, they estimated an approximate charge per
ice particle ejected of 50 fC. Although, the magnitude of the
charge is larger than the average charge per charged splinter
obtained in the current work (14 fC), both are of the same or-
der of magnitude. Likely, this charge has been overestimated
in their study given that their estimates include various as-
sumptions and inherent uncertainties, including the number
of splinters produced by the charging rod and the ice crys-
tal/graupel collisions produced by the secondary ice particles
ejected from the experimental device used in the measure-
ments. The advantage of the current work is that the charge
of each single ejected particle was measured, thus the number
and the charges of the splinters can be accurately determined.

The physical mechanism of multiplication was largely dis-
cussed byChourlarton et al. (1978), Dong and Hallett
(1989) and Saunders and Hosseini(2001). The physi-

cal mechanism responsible for the electric charge carried by
the particles ejected from the graupel growing by riming is
still a matter of discussion. Likely, the temperature gradient
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maintained between a freezing droplet (∼0◦C) and the grau-
pel surface (∼Tr ) generates a net electric charge on the freez-
ing droplet due to the different mobilities of H+ and OH− in
ice (thermoelectric effect –Latham and Mason(1961)) with
the colder ice surface becoming positively charged and the
warmer freezing droplet negatively charged. Thus, it is pos-
sible that charge separation occurs when the freezing droplets
fragment and a portion of droplet is ejected from the surface.

Values of the freezing and subsequent cooling times of
the water droplets on an ice surface were calculated for vari-
ous values of the ambient temperature and droplet radius by
Macklin and Payne(1967). They estimated that the freezing
times of water layers of 20 µm thickness is between 10 and
50 ms for temperatures above−10◦C. On the other hand,
theory and experiment show that about 10 ms are required
for the process of proton migration by temperature gradients
(Latham and Stow, 1967). Both times are of the same order
of magnitude; therefore, this mechanism, in principle, could
be viable to account for the observed charge separation dur-
ing the ejection process. However, more accurate estimations
of these times are required in order to validate the mecha-
nism.

It is important to note that maybe an important number
of fragments ejected from the graupel growing by riming
could carry electric charge with magnitude under the detec-
tion level. However, it is not possible to quantify this pro-
duction so far.

Many authors (See review bySaunders(1994)) have ob-
served that, in general, droplets alone colliding with a rimed
target do not separate charge. The main difference between
the present and previous studies of the H-M process with
droplets larger than 24 µm and smaller than 13 µm, is that the
electric current acquired by the rimed target was measured;
in the present study the charge carried by individual particles
ejected from the rimer has been measured. The results indi-
cate that the electric current cannot be detected because there
are only sporadic charged particles ejected from the target.

4 Effects on cloud electrification

In order to evaluate the contribution that the ejection of
charged particles can make to cloud electrification, we have
estimated that the rimed surface of the artificial graupel ca-
pable of ejecting charged particle is approximately 132 mm2.
By taking a charging rate of 50 fC min−1, then, this mech-
anism is able to produce approximately a charging rate of
0.4 fC min−1 mm−2 of graupel surface. Thus, soft hail of
1, 2 and 3 mm radius could be charged with rates of 5, 20,
45 fC min−1 respectively; and in 30 min (which is a charac-
teristic time of residence of particles within the clouds) they
could acquire charges of 0.15, 0.6 and 1.4 pC, respectively.

Although the values of the charges that soft hail pellets
could acquire via this mechanism are relatively small, they
are of the same order of magnitude as many of the charges

on precipitation particles ofmm-size reported in measure-
ments made in real clouds. For instance,Mo et al. (2007)
performed aircraft measurements of the electric field, and hy-
drometeor size and charge in a precipitation shaft beneath the
base of a small convective cloud which was electrified. They
were able to detect precipitation particles larger than 0.2 mm
and charges greater than 0.5 pC and found that 70% of the
particles carried charge greater than 0.5 pC, most of the parti-
cles carried charge between 0.5 and 10 pC and the maximum
charge was 25 pC. They also found that 98% of the charged
particles were charged positively.

Williams (1989) proposed that the electrical structure of
thunderstorms can be represented as a vertical tripole con-
sisting of three charge regions, an upper positive charge re-
gion, a midlevel negative charge region, and a lower positive
charge region. The lower positive charge region plays a key
role to enhance the electric field at the bottom of the main
negative charge region, thus important lightning activity can
be induced between negative and positive charge regions lo-
cated in middle and lower parts of a thunderstorm respec-
tively. Nag and Rakov(2009) suggested that the lower pos-
itive charge region could help the discharge of a negatively
charged leader propagating downward; also the presence of
a large amount of lower positive charge may avoid the occur-
rence of negative CG discharges.

The mechanism of ejection of charged particles could, in
principle, explain the positive charge smaller than 5 pC ac-
quired by individual precipitation particles ofmm-size in the
lower part of the cloud. By assuming that the undetected
charged particles ejected from the graupel (charges<1 fC)
are also negatively charged due to the temperature differ-
ence between the freezing droplet and the rime surface, they
could contribute to the positive charge acquired by the grau-
pel growing by riming. For instance, in the case that every
undetected charged fragment carry 0.5 fC, then the charge ac-
quired by the graupel particle could increase by a factor 4.5.
However, we cannot quantify more precisely this contribu-
tion so far.

In addition, charges larger than around 5 pC found on the
precipitation particles could also be acquired by collisions
with other ice particles such as ice crystals or other grau-
pel pellets (Takahashi(1978); Saunders at al.(1991, 1999,
2001); Saunders et al. (2006); Avila et al. (1995, 1996,
1998); Pereyra et al.(2000, 2008), etc).

An important observation is that the sign of the charge ac-
quired by the rime was positive in agreement with the sign of
the charged precipitation particles found in the lower region
of clouds.Bateman et al.(1999) suggested that the charge of
the lower positive charge region should be produced almost
entirely by precipitation particles. Thus, we can conclude
that the current results suggest that the mechanism of ejec-
tion of charged particles under conditions of secondary ice
crystal production is a viable mechanism to contribute to the
formation of the lower positive charge region.
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