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A. van Donkelaar1, and S. Ferrachat2

1Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Canada
2Institute of Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
3Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
4Atmospheric, Oceanic, and Planetary Physics, University of Oxford, Oxford, UK
5Landesamt fur Umwelt, Natur und Verbraucherschutz NRW (LANUV), Recklinghausen, Germany
6Max Planck Institute for Meteorology, Hamburg, Germany
7Department of Geosciences, University of Oslo, Oslo, Norway
8Bjerknes Centre for Climate Research, Bergen, Norway

Received: 23 September 2009 – Published in Atmos. Chem. Phys. Discuss.: 21 October 2009
Revised: 6 February 2010 – Accepted: 8 February 2010 – Published: 15 February 2010

Abstract. A diagnostic cloud nucleation scavenging scheme,
which determines stratiform cloud scavenging ratios for
both aerosol mass and number distributions, based on cloud
droplet, and ice crystal number concentrations, is introduced
into the ECHAM5-HAM global climate model. This scheme
is coupled with a size-dependent in-cloud impaction scav-
enging parameterization for both cloud droplet-aerosol, and
ice crystal-aerosol collisions. The aerosol mass scavenged in
stratiform clouds is found to be primarily (>90%) scavenged
by cloud nucleation processes for all aerosol species, except
for dust (50%). The aerosol number scavenged is primarily
(>90%) attributed to impaction. 99% of this impaction scav-
enging occurs in clouds with temperatures less than 273 K.
Sensitivity studies are presented, which compare aerosol
concentrations, burdens, and deposition for a variety of in-
cloud scavenging approaches: prescribed fractions, a more
computationally expensive prognostic aerosol cloud process-
ing treatment, and the new diagnostic scheme, also with
modified assumptions about in-cloud impaction and nucle-
ation scavenging. Our results show that while uncertainties
in the representation of in-cloud scavenging processes can
lead to differences in the range of 20–30% for the predicted
annual, global mean aerosol mass burdens, and near to 50%
for accumulation mode aerosol number burden, the differ-
ences in predicted aerosol mass concentrations can be up to
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one order of magnitude, particularly for regions of the mid-
dle troposphere with temperatures below 273 K where mixed
and ice phase clouds exist. Different parameterizations for
impaction scavenging changed the predicted global, annual
mean number removal attributed to ice clouds by seven-fold,
and the global, annual dust mass removal attributed to im-
paction by two orders of magnitude. Closer agreement with
observations of black carbon profiles from aircraft (increases
near to one order of magnitude for mixed phase clouds), mid-
troposphere210Pb vertical profiles, and the geographic distri-
bution of aerosol optical depth is found for the new diagnos-
tic scavenging scheme compared to the prescribed scaveng-
ing fraction scheme of the standard ECHAM5-HAM. The di-
agnostic and prognostic schemes represent the variability of
scavenged fractions particularly for submicron size aerosols,
and for mixed and ice phase clouds, and are recommended in
preference to the prescribed scavenging fractions method.

1 Introduction

Atmospheric aerosols significantly influence climate since
they both reflect and absorb radiation (direct effects), and
modify cloud properties (indirect radiative effects) (Twomey,
1991; Charlson et al., 1992). Aerosols enter cloud droplets,
or ice crystals by the nucleation process when they act as
cloud condensation, or ice nuclei, and secondly by the pro-
cess of impaction with the cloud droplets or ice crystals
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(Pruppacher and Klett, 1997). A fraction of these droplets
and crystals will then grow into precipitation particles that
are removed from the atmosphere. Global climate mod-
els (GCMs) must accurately represent these nucleation and
impaction processes that incorporate aerosols into cloud
droplets and ice crystals in order to predict reasonable three-
dimensional aerosol distributions, and deposition. Differ-
ences in aerosol prediction between global models have been
attributed in part to differences in the representation of these
removal processes (Textor et al., 2006).

This study will present a comparison between the variety
of treatments for in-cloud nucleation and impaction scav-
enging that have been implemented in global models, in-
cluding prescribed fractions, and diagnostic and prognostic
treatments for the in-droplet and in-crystal aerosols. Using
the ECHAM5-HAM GCM, we will examine the strengths
and weaknesses of the various parameterization and inves-
tigate whether uncertainties in in-cloud scavenging param-
eterizations lead to any significant differences in predicted
aerosol concentrations, burdens and deposition. Earlier work
by Ghan and Easter(2006) showed that a diagnostic scheme
under-predicted global mean aerosol burdens by 20% as
compared to a prognostic representation of the in-droplet
aerosols. However, that study did not explore the bias of
using prescribed scavenging fractions, and did not examine
sensitivities related to the scavenging of aerosols by ice crys-
tals as we will do for this study.

Prescribed aerosol scavenging fractions have traditionally
been implemented in many GCMs, including ECHAM5-
HAM, and some models have simply assumed that 100% of
the aerosol in a cloud is scavenged into the cloud droplets
and ice crystals (e.g.,Barth et al., 2000; Chin et al., 2000;
Takemura et al., 2002; Stier et al., 2005; Tie et al., 2005).
This approach is desirable for the low computational ex-
pense. Other global models use diagnostic in-cloud scav-
enging schemes, which diagnose the total aerosol scavenged
fraction at each model time-step based on selected parame-
ters related to cloud droplet and ice crystal nucleation and im-
paction processes, such as the supersaturation, updraft speed,
and aerosol size and composition (e.g.,Adams and Sein-
feld, 2002; Gong et al., 2003). By the term diagnostic, we
mean that the total aerosol fraction scavenged into the cloud
droplets and ice crystals is diagnosed at each model time-
step, and unlike in a prognostic scavenging scheme, aerosol
in-droplet and in-crystal concentrations are not passed be-
tween model time-steps. Prognostic aerosol cloud processing
schemes have also been recently developed, which do pass
aerosol in-droplet, and in-crystal aerosol concentrations be-
tween model time-steps (e.g.,Ghan and Easter, 2006; Hoose
et al., 2008a,b). In this study, we introduce a new diagnos-
tic aerosol scavenging scheme into the ECHAM5-HAM, and
compare with additional simulations that treat in-cloud scav-
enging either by the prescribed fractions, or with the prog-
nostic scheme ofHoose et al.(2008a,b).

Our new diagnostic scavenging scheme includes a phys-
ically detailed size-dependent parameterization of in-cloud
impaction scavenging. This will allow us to examine the
relative contributions of the nucleation and impaction scav-
enging processes to total in-cloud scavenging in the global
context.Jacobson(2003) found for a one-dimensional study
that aerosol mass was primarily scavenged by nucleation,
whereas aerosol number was primarily scavenged by im-
paction processes. Recently,Baumgardner et al.(2008) have
suggested that for black carbon, scavenging by ice crystals is
dominated by impaction as opposed to nucleation processes.

Currently, the representation of impaction scavenging
varies considerably between global models, and is a source
of uncertainty in the in-cloud scavenging parameterizations.
Some global models include impaction scavenging implicitly
in the prescribed scavenging ratios (Stier et al., 2005). Other
models have an explicit impaction scavenging parameteriza-
tion. For example,Gong et al.(2003) used a parameterized
equation as a function of the mean cloud droplet and aerosol
radii, and cloud droplet number concentration.Hoose et al.
(2008a,b) used prescribed collection kernels for each aerosol
mode of ECHAM5-HAM. In this study, we compare the
prescribed kernel approach ofHoose et al.(2008a,b) with
our physically detailed size-dependent cloud droplet-aerosol,
and ice crystal-aerosol impaction scavenging parameteriza-
tion, and additional sensitivity simulations that have zero im-
paction scavenging. Our new physically detailed parameter-
ization selects mean mass and number impaction scaveng-
ing coefficients from a look-up table as a function of mean
cloud droplet radius (assuming a gamma distribution), me-
dian radius of the lognormal aerosol mass or number dis-
tribution, and cloud droplet number concentration. This is
coupled with an ice-crystal-aerosol in-cloud impaction scav-
enging parameterization that depends on the monodisperse
ice crystal radius, ice crystal number concentration, and the
median aerosol radius of the mass and number distributions.
In this study, we will examine the relative uncertainty in pre-
dicted aerosol concentrations that may be attributed to either
nucleation or impaction processes for all cloud temperatures.

The next section gives a description of the
ECHAM5 GCM, coupled to the aerosol scheme HAM,
and includes the details of the various in-cloud scavenging
parameterizations. Section 3 summarizes the impacts of the
in-cloud scavenging parameterizations on the global aerosol
three-dimensional distributions and removal rates. Section 4
presents a comparison with observations of aerosol wet
deposition, vertical profiles of black carbon concentrations,
marine boundary layer size distributions, and aerosol optical
depth. This also includes a sub-section on the global
modeling of 7Be and 210Pb, which are useful as passive
tracers to examine in-cloud scavenging parameterizations.
Section 5 gives a summary and conclusions.
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2 Model description

ECHAM5 is the fifth generation atmospheric general circula-
tion model (GCM) developed at the Max-Planck Institute for
Meteorology (Roeckner et al., 2003), and evolved from the
model of the European Centre for Medium Range Weather
Forecasting (ECMWF). The model solves prognostic equa-
tions for vorticity, divergence, temperature and surface pres-
sure using spheric harmonics with triangular truncation. Wa-
ter vapor, cloud liquid and ice water are transported using
a semi-Lagrangian scheme (Lin and Rood, 1996). Addi-
tionally, for this study we have implemented the prognostic
equations for cloud liquid and ice water, mass and number
following Lohmann et al.(2007), and the cirrus scheme of
Lohmann and K̈archer(2002). Convective clouds, and trans-
port are based on the mass-flux scheme ofTiedtke (1989)
with modifications followingNordeng(1994). The solar ra-
diation scheme has 6 spectral bands (Cagnazzo et al., 2007)
and the infrared has 16 spectral bands (Mlawer et al., 1997;
Morcrette et al., 1998).

The GCM is coupled to the Hamburg Aerosol Model
(HAM), which is described in detail inStier et al.(2005).
The five aerosol species (sulfate, black carbon, particulate or-
ganic matter, sea salt and dust) are represented by seven log-
normal modes, 4 internally mixed/soluble modes – nucle-
ation (NS), Aitken (KS), accumulation (AS), and coarse (CS
), – and 3 insoluble modes – Aitken (KI), accumulation (AI),
and coarse (CI). The count median radius for each mode is
calculated from the aerosol mass and number concentrations
of each mode, which are allowed to vary independently, and
with a fixed standard deviation for each mode. Aerosol mass
and number are transferred between the modes by the pro-
cesses of sulfuric acid condensation, and also coagulation
between aerosols. All results presented in this study are from
a one year simulation, following a three months spin-up pe-
riod, except 6 months spin-up period for simulations with
210Pb and7Be. All simulations are nudged towards the me-
teorological conditions of the year 2001. The nudging ap-
proach, combined with aerosol-radiation de-coupling, was
chosen in order to have the same dust and sea salt emissions
in all simulations. We chose the year 2001 since that was a
neutral year for the El Nino Southern Oscillation. The natu-
ral emissions of sea salt, dust, and DMS from the oceans are
calculated on-line, based on the meteorology of the model.
Emissions for all other aerosol species are taken from the
AEROCOM emission inventory, and are representative for
the year 2000 (Dentener et al., 2006b). The aerosol emis-
sions and the removal processes of sedimentation, and dry
deposition are described in detail inStier et al.(2005). For
this study, the below-cloud scavenging parameterization of
Croft et al. (2009) has been implemented. This physically
detailed below-cloud impaction scavenging parameterization
uses look-up tables to select scavenging coefficients that rep-
resent the collection of aerosols by rain and snow below
clouds based on aerosol size and precipitation rates.

2.1 In-cloud aerosol scavenging parameterizations

2.1.1 Current in-cloud scavenging

In the standard ECHAM5-HAM model, in-cloud scaveng-
ing ratios are prescribed for each of the seven log-normal
modes. These ratios depend on the cloud temperature, dis-
tinguishing between warm, mixed and ice clouds, and also
depend on the cloud type, either stratiform or convective.
The cloud scavenging ratios are presented in Table1. The
control (CTL) simulation is conducted with these prescribed
ratios of the standard ECHAM5-HAM model. The rate of
change of traceri is

1Ci

1t
= RiCif

cl
(f liqQliq

Cliq
+

f iceQice

Cice

)
(1)

whereRi is the prescribed in-cloud scavenging ratio,Ci is
the mixing ratio of traceri, f cl is the cloud fraction,Cliq and
Cice are the cloud liquid and ice water mixing ratios, respec-
tively, Qliq andQice are the respective sums of the conversion
rates of cloud liquid and ice to precipitation by the processes
of autoconversion, accretion and aggregation, andf liq and
f ice are the respective liquid and ice fraction of the cloud wa-
ter, and1t is the time-step. Each prescribed in-cloud scav-
enging ratio treats impaction scavenging implicitly together
with nucleation scavenging in the current model.

2.1.2 New diagnostic in-cloud nucleation scavenging

For the new nucleation scavenging parameterization, the
scavenging ratios for stratiform clouds are diagnosed from
the cloud droplet number concentration (CDNC), and the
ice crystal number concentration (ICNC). The convective in-
cloud scavenging for all simulations uses the prescribed ra-
tios given in Table1, and described in detail inStier et al.
(2005). For stratiform clouds, both the CDNC and ICNC are
prognostic variables in the version of the ECHAM5-HAM
model used here, and the cloud microphysics is described in
detail in Lohmann et al.(2007). In our model version, and
for all simulations presented in this study, the activation of
aerosol particles to form cloud droplets is parameterized us-
ing theGhan et al.(1993) scheme. The number of activated
aerosolsNact,Ghan is given by

Nact,Ghan=
ωN>35 nm

ω + βN>35 nm
(2)

and

ω = ω̄ + 0.7
√

TKE. (3)

ω is the updraft velocity,̄ω is the large-scale vertical veloc-
ity, TKE is the turbulent kinetic energy,β is 0.0034 cm4 s−1,
andN>35nm is the total number of soluble/internally mixed
aerosols with radii>35 nm.

For the new diagnostic nucleation scavenging scheme, the
total number of aerosols to be scavenged into the cloud
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Table 1. In-cloud scavenging ratios for each of the seven log-normal modes of the ECHAM5-HAM dependent on the cloud type and
temperature (warm:T >273.15 K, mixed: 238.15<T ≤273.15 K, ice:T ≤238.15 K) followingStier et al.(2005).

Mode Warm Stratiform Mixed Stratiform Ice Stratiform Convective

Nucleation Soluble (NS) 0.10 0.10 0.00 0.20
Aitken Soluble (KS) 0.25 0.40 0.10 0.60
Accumulation Soluble (AS) 0.85 0.75 0.10 0.99
Coarse Soluble (CS) 0.99 0.75 0.10 0.99
Aitken Insoluble (KI) 0.20 0.10 0.10 0.20
Accumulation Insoluble (AI) 0.40 0.40 0.10 0.40
Coarse Insoluble (CI) 0.40 0.40 0.10 0.40

droplets and ice crystals at each time-step is the sum of the
CDNC and ICNC. For clouds with temperatures>238.15 K,
the liquid cloud droplets, and those frozen heterogeneously
to ice crystals in our model, both originate fromGhan et al.
(1993) activation scheme. Thus, we can treat the total num-
ber of droplets and crystals as the total number of aerosols
scavenged by nucleation. This total number must be ap-
portioned between the four soluble/internally mixed aerosol
modes in a manner that is consistent with the activation
scheme as follows,

Nj,scav= (CDNC+ ICNC) ·
Nj>35 nm

N>35 nm
(4)

whereNj,scav is the total number of aerosols to be scavenged
from thej -th mode, forj=NS, KS, AS, CS.Nj>35 nm is the
aerosol number for thej -th mode having radii greater than
35 nm, andN>35 nm is the number of aerosols having radii
greater than 35 nm summed over all the soluble/internally
mixed modes. Thus, if traceri is a soluble/internally mixed
number mixing ratio, we have the following nucleation scav-
enging fraction,

Ri,nuc =
Nj,scav

Nj

. (5)

whereNj is the total number of aerosols in thej -th mode.
The insoluble modes are assumed to have nucleation scav-
enging ratios of zero, but the impaction scavenging ratio
might not be zero.

The scavenged fraction of the mass distribution is not set
equal to the scavenged fraction of the number distribution.
To determine the fractional scavenging of the mass distribu-
tion, the aerosols in each mode are assumed to be scavenged
progressively from the largest to the smallest size. Thus, for
each mode a critical radius,rj,crit, can be determined that has
exactlyNj,scav in the lognormal tail of the number distribu-
tion. The total aerosol mass to be scavenged from thej -th
mode is that mass of the lognormal tail that lies aboverj,crit.

To calculaterj,crit, the cumulative log-normal size distri-
bution,FN (rj,crit), is employed, where

FN (rj,crit) = Nj − Nj,scav=
Nj

2
+

Nj

2
erf (6)(

ln (rj,crit/rpg)
√

2 ln σg

)
andrpg is the count median radius for thej -th mode,σg is
the standard deviation for the respective mode and erf refers
to the error function. By taking a rational approximation to
the inversion of the error function, the above equation can be
solved forrj,crit. Thus, the critical radius is given by,

rj,crit = rpg · (7)(
exp

(
√

2ln σg · erf−1
(

1−

(
2·(CDNC+ICNC) ·

Nj>35 nm

NjN>35 nm

))))
whereNj,scav has been replaced the explicit expression in
Eq. (4). Therefore, if traceri is a soluble/internally mixed
mass mixing ratio we have the following nucleation scav-
enging fraction for the mass distribution,

Ri,nuc =

∫
∞

rj,crit
mi,j (rp)drp∫

∞

0 mi,j (rp)drp
(8)

wheremi,j (rp) is the lognormal mass distribution for thei-th
aerosol species of thej -th mode, andrp is the aerosol ra-
dius. The lognormal mass distribution has the same standard
deviation as the number distribution for any given mode, as
described inStier et al.(2005), and the mass median radius
for the lognormal distribution (rpg,m) is related to the count
median radius (rpg) following

rpg,m = rpg · exp(3ln2σg). (9)

The nucleation scavenging for temperatures below
238.15 K is different, since the ice crystals originate from
homogeneous freezing at these temperatures. Homogeneous
freezing does not require an ice nucleus. The version of the
ECHAM5-HAM model used here includes the cirrus scheme
described inLohmann and K̈archer(2002). The total ICNC

Atmos. Chem. Phys., 10, 1511–1543, 2010 www.atmos-chem-phys.net/10/1511/2010/



B. Croft et al.: In-cloud scavenging in ECHAM5-HAM 1515

10
−3

10
−2

10
−1

10
0

10
1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Geometric Mean Aerosol Radius [μm]

M
ea

n 
S

ca
ve

ng
in

g 
C

oe
ffi

ci
en

t [
s−

1 ]

 

 

5 μm
10 μm
15 μm
20 μm
25 μm
30 μm
35 μm
40 μm
45 μm
50 μm

Fig. 1. In-cloud mean mass (dashed lines) and number (solid lines) impaction scavenging coefficients (s−1) as a function of geometric mean
aerosol radius, for a cloud droplet number concentration of 40 cm−3, and for a range of mean cloud droplet radii from 5 to 50 µm. The
prescribed cloud droplet collection coefficients ofHoose et al.(2008a,b) are shown by the red thick steps.

is assumed to be equal to the total number of aerosols to be
scavenged, but the modes are scavenged progressively from
the largest soluble/internally mixed mode (CS) to the small-
est (KS), which is consistent with the homogeneous freezing
parameterization of our model. As a result, the calculation of
the critical radius, is only done for the mode that is found to
be partially scavenged, after all larger modes are fully scav-
enged. The nucleation scavenging ratio is set to zero for all
modes smaller than the partially scavenged mode, and for all
insoluble modes.

2.1.3 New size-dependent in-cloud impaction
scavenging

For the aerosol-cloud droplet impaction scavenging, the
mean mass scavenging coefficients, in units of inverse time,
are

3m(rpg,m) =

∫
∞

0 3(rpg,m)r3
pn(rp)drp∫

∞

0 r3
pn(rp)drp

, (10)

and the mean number scavenging coefficients are

3n(rpg) =

∫
∞

0 3(rpg)n(rp)drp∫
∞

0 n(rp)drp
, (11)

wheren(rp) is the aerosol lognormal number distribution,
rp is the aerosol radius, andrpg, and rpg,m are the median

aerosol radius for the number and mass distribution, respec-
tively. The scavenging coefficient3(rpg), also in units of
inverse time, is defined as

3(rpg) =

∫
∞

0
πR2

liqUt(Rliq)E(Rliq,rpg)n(Rliq)dRliq (12)

whereRliq is the cloud droplet radii,Ut(Rliq) is the terminal
velocity of the cloud droplet,E(Rliq,rp) is the collision ef-
ficiency between the aerosol and cloud droplet, andn(Rliq)

is the cloud droplet number distribution, which is assumed
to be a Gamma distribution. We find the collision efficien-
cies and terminal velocities following the approach outlined
in detail in Croft et al. (2009). Figure 1 shows the im-
paction scavenging coefficients for a CDNC of 40 cm−3 as
an example. Note that for this figure, the aerosol radii are
the geometric mean radii for the assumed lognormal aerosol
distribution. The scavenging coefficients have a minimum
for aerosol radii near to 0.1 µm. For aerosols with radii
smaller than 0.1 µm, Brownian motion increases their col-
lection by the cloud droplets, whereas the inertia of larger
aerosols increases their collection. At the minimum, nei-
ther of these forces is dominant. The impaction scavenging
coefficients are compiled in look-up tables. Thus, if tracer
i is a mass mixing ratio, the scavenging fraction for cloud
droplet-aerosol impaction is

Ri,imp,liq = 3m(rpg,m)1t (13)
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and likewise if traceri is a number mixing ratio, but us-
ing 3n(rpg). Both soluble/internally mixed, and insoluble
aerosol modes are scavenged similarly by impaction.

Since the ECHAM5-HAM model assumes that the ice
crystals are monodiperse, we do not integrate over an ice
crystal number distribution to determine the scavenging ra-
tio. The scavenged fraction due to aerosol-ice crystal im-
paction is defined as

Ri,imp,ice = K(Rice,rpg) · ICNC · 1t (14)

where ICNC is the ice crystal number concentration, andRice
is the radius of the maximum dimension of the ice crystal,
andrpg is the median radius of the aerosol number, or mass
distribution, andK(Rice,rp) is the collection kernel given by,

K(Rice,rpg) = πR2
iceUt(Rice)E(Rice,rpg) (15)

where Ut(Rice) is the ice crystal terminal velocity and
E(Rice,rpg) is the collection efficiency for ice crystal-aerosol
collisions. The size of the monodisperse crystals is calcu-
lated depending on the ice water content and the ICNC as
described inLohmann et al.(2008). The collection kernels
are taken fromMiller and Wang(1991) in units of cm3 s−1

and are compiled in look-up tables in our model. For tem-
peratures less than 238.15 K, we assume that all crystals
are columns, and for temperatures greater than 238.15 K, all
crystals are assumed to be plates (Lohmann et al., 2008).
There is a lack of collection data for ice crystals with radii
less than about 30µm. For these crystal sizes, we use the
same collection kernels as for liquid droplets, as described in
detail in Croft et al.(2009). Ice crystals of this size are of-
ten assumed to be quasi-spherical (Spichtinger and Gierens,
2009).

Figure 2 shows the collection kernels for ice plates and
columns for a selection of Reynold’s numbers, and also for
droplets with radii of 30 µm and less. In our look-up table
approach, the Reynold’s number is related to the size of the
ice crystals following the crystal dimensions given inMar-
tin et al. (1980), andMiller and Wang(1989). Similar to
droplets, ice crystals have a scavenging minimum, but this
minimum shifts due to the various geometries of the crystals.
For particle sizes near the scavenging minimum, plates are
more efficient scavengers than columns.Miller and Wang
(1991) attribute this to the formation of eddies in the flow
around the plate geometry, which increases their collection.
There is also a zone of zero-scavenging (ZSZ) for aerosols
in the 1–2 µm size range, which occurs since the sum of all
forces at work results in a near-zero probability of collision
between the aerosol and falling crystal. While the scavenging
coefficients presented in Figs.1 and2 are reasonable, there
are considerable uncertainties associated the parameteriza-
tion of impaction scavenging. Assumptions about the col-
lector particle size distribution, and the collection efficiency,
particularly associated with thermophoretic, turbulent, and
electric forces can cause the scavenging coefficients to differ

by up to an order of magnitude (Wang et al., 1978; Miller
and Wang, 1989). For the parameterization of impaction
scavenging of aerosols by cloud droplets, we use separate
scavenging coefficients for aerosol mass and number, but we
do not make this separation for ice-crystal-aerosol impaction
scavenging. This is an additional uncertainty related to the
scavenging of aerosols by ice crystals that we do not address
here, but that should be considered in future work.

Similar to Eq. (1), the local rate of change of the tracerCi

due to in-cloud scavenging by both nucleation and impaction
is

1Ci

1t
= Cif

cl

(
(Ri,nuc + Ri,imp,liq)f liqQliq

Cliq
(16)

+
(Ri,nuc + Ri,imp,ice)f

iceQice

Cice

)

wheref liq andf ice are the respective liquid and ice water
fractions of the total cloud water,f cl is the cloud fraction,
Cliq andCice are the cloud liquid and ice water content, re-
spectively, andQliq andQice are the respective sums of the
conversion rates of cloud liquid and ice to precipitation by
the processes of autoconversion, accretion and aggregation.
This diagnostic scavenging approach is implemented in sim-
ulation DIAG-FULL.

2.1.4 Prognostic in-cloud scavenging

In this study, we also use the prognostic in-cloud aerosol pro-
cessing scheme for stratiform clouds developed byHoose
et al. (2008a,b) (simulation PROG-AP). This scheme treats
the aerosol mass and number concentrations in the cloud
droplets and ice crystals as prognostic species, which are
passed between model time-steps. The processes of nucle-
ation and impaction scavenging, evaporation, sublimation,
freezing and melting are represented for this parameteriza-
tion. The methodology is described in detail inHoose et al.
(2008a,b). Unlike the new diagnostic scheme, the prognos-
tic scheme currently applies the same nucleation scavenging
ratio to both the aerosol mass and number distributions for
any given aerosol mode, grid box and time-step, as opposed
to having separate mass and number nucleation scavenging
ratios. One other difference is that the in-cloud impaction
scavenging for the time being implements the prescribed ker-
nels of Table2 as opposed to the physically detailed size-
dependent impaction parameterization of the new diagnostic
scheme in the simulation DIAG-FULL.

2.1.5 In-cloud scavenging sensitivity simulations

We implement several variations to the new diagnostic
scheme as sensitivity tests. All simulations conducted for
this study are summarized in Table3. Simulation DIAG2
replaces the size-dependent in-cloud impaction parame-
terization of simulation DIAG-FULL with the prescribed
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Fig. 2. Impaction scavenging kernels (cm3 s−1) for in-cloud ice crystal-aerosol collisions as a function of aerosol radius, and ice crystal
Reynold’s number (Re) following Miller and Wang(1991) (solid lines), and for both columns and plates. The dashed lines are for droplet-
aerosol collisions. Ri indicates collector radius. The prescribed ice crystal collection kernels ofHoose et al.(2008a,b) are shown by the red
thick steps.

impaction kernels ofHoose et al.(2008a,b) given in Table2.
DIAG2 is otherwise the same as DIAG-FULL. Simulation
DIAG1 differs from simulation DIAG2 only in that the nucle-
ation scavenging is changed such that the the mass nucleation
scavenging ratios are set equal to the diagnosed number nu-
cleation scavenging ratios. Two additional sensitivity studies
are done to examine the prescribed ratio approach. 100% of
the aerosols in clouds are assumed to be scavenged into the
droplets or crystals for the simulation F100. This simplis-
tic assumption has been used in global models (e.g.,Barth
et al., 2000). The simulation F100-INT is similar except that
100% of the soluble/internally mixed aerosols in clouds are
assumed to be cloud-borne, and 0% of the insoluble aerosol
is scavenged into the cloud droplets or crystals. All of our
simulations that implement scavenging by prescribed frac-
tions treat the process of impaction implicitly together with
nucleation in the prescribed fractions. To examine the rela-
tive importance of impaction, particularly related to aerosol
vertical profiles, we set all in-cloud impaction scavenging to
zero for the simulations DIAG-FULL-noimp and PROG-AP-
noimp, which are otherwise identical to DIAG-FULL and
PROG-AP, respectively.

Table 2. In-cloud impaction scavenging kernels (m3 s−1) for
aerosol-droplet and aerosol-ice crystal collision for each of the
seven log-normal modes of the ECHAM5-HAM followingHoose
et al.(2008a,b).

Mode Droplets Crystals

Nucleation Soluble (NS) 2.5×10−12 5.0×10−11

Aitken Soluble (KS) 2.5×10−12 5.0×10−11

Accumulation Soluble (AS) 2.0×10−14 2.0×10−12

Coarse Soluble (CS) 0.0 2.0×10−13

Aitken Insoluble (KI) 2.5×0−12 5.0×10−11

Accumulation Insoluble (AI) 2.0×10−14 2.0×10−12

Coarse Insoluble (CI) 0.0 2.0×10−13

3 Results of the global simulations

3.1 Aerosol scavenged fractions

Figure 3 shows a frequency plot of the aerosol mass and
number scavenged fractions for the DIAG-FULL simulation
as compared to the prescribed ratios ofStier et al.(2005),
which are implemented for the CTL simulation. Particu-
larly for mixed phase clouds, the scavenged fractions deviate
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Table 3. The simulations conducted for this study are summarized in this table.

Simulation Description

CTL Control simulation using prescribed in-cloud scavenging ratios from Table1
F100 Assuming 100% of aerosols in clouds are cloud-borne for all aerosol modes
F100-INT Assuming 100% of soluble/internally mixed aerosols in clouds are cloud-borne, and 0% of insoluble

aerosols are cloud-borne
DIAG1 In-cloud nucleation scavenging ratios diagnosed from cloud droplet and ice crystal number concentrations,

equating the mass with the number nucleation scavenging ratios, and usingHoose et al.(2008a,b) impaction
scavenging kernels from Table2

DIAG2 Same as DIAG1, but with separate mass and number nucleation scavenging ratios (see text for details)
DIAG-FULL Same as DIAG2, but using physically detailed size-dependent in-cloud impaction scavenging coefficients,

and kernels for cloud droplets and ice crystals shown in Figs. 1 and 2.
DIAG-FULL-noimp Same as DIAG-FULL except no in-cloud impaction scavenging
PROG-AP Prognostic stratiform aerosol processing scheme ofHoose et al.(2008a,b)
PROG-AP-noimp Same as PROG-AP except no in-cloud impaction scavenging
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Fig. 3. Histograms of the frequency of occurrence of the stratiform in-cloud mass and number scavenging ratios for the simulation DIAG-
FULL (Table3), including both nucleation and size-dependent impaction scavenging for the internally mixed/soluble Aitken (KS), accumula-
tion (AS), and coarse (CS) aerosol modes, and for warm (T >273.15 K), mixed (238.15<T ≤273.15 K) and ice (T ≤238.15 K) phase clouds.
The dashed line indicates the prescribed ratios ofStier et al.(2005) used for the CTL simulation.
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considerable from the prescribed ratios, and are<0.1 for
near to 50% of the occurrences for number scavenging. As
the clouds glaciate, the Bergeron-Findeisen process causes
rapid growth of the few ice crystals at the expense of the
cloud droplets, which reduces the CDNC, and hence results
in lower scavenged fractions for simulation DIAG-FULL.
For warm phase clouds, the Aitken and accumulation mode
scavenged fractions for simulation DIAG-FULL are greater
than the prescribed ratios for 75% of the scavenging events.
For ice clouds, the scavenging of the coarse mode is greater
than the prescribed ratio of 0.1 for near to 60% of the scav-
enging occurrences, suggesting that the prescribed fraction
for scavenging the coarse mode in ice clouds might be too
low. Figure3 also shows that the scavenged fractions for the
mass distributions are higher than for the number distribu-
tions. This is physically correct since the median radii of the
aerosol mass distributions are higher than for the respective
number distributions, and so mass distributions should be
scavenged with higher fractions. As opposed to equating the
mass with the number scavenging ratios, our approach will
alter the aerosol size distribution to produce smaller aerosols.
The impact of in-cloud scavenging on aerosol size is exam-
ined further in the following subsection.

Figure4 shows the zonal and annual mean aerosol mass
scavenged into the cloud droplets and ice crystals averaged
over clear and cloudy regions, comparing the simulations
CTL, DIAG-FULL, and PROG-AP. The mass scavenged is
greatest near the surface sources of the aerosols where warm
phase clouds occur. In these regions, there are generally dif-
ferences of<10% for the DIAG-FULL relative to the CTL
simulation, but there are reductions of up to 50% for sulfate
and sea salt scavenged mass over the southern oceans. For
the PROG-AP simulation, the mass scavenged for all aerosol
species in the regions of warm clouds is lower by near to
50% compared to the CTL simulation.Hoose et al.(2008a)
explained this is a result of the dependence of scavenged
fraction on cloud history in an aerosol processing simulation.
Alternatively, for the diagnostic and prescribed fraction scav-
enging approaches, all of the aerosol is assumed to be avail-
able for scavenging at each time-step since the in-droplet
and in-crystal aerosol concentrations are not passed between
model time-steps. Both the DIAG-FULL and PROG-AP
simulation behave similarly in the colder regions of the tro-
posphere where mixed and ice phase clouds occur. These
more physically detailed parameterizations indicate that the
mass scavenged, particularly in ice clouds, is greater by up to
two-fold as compared to the mass scavenged using the pre-
scribed scavenging fractions of the CTL simulation. This
aerosol mass scavenged into the cloud droplets and ice crys-
tals may not necessarily be removed by precipitation, since
the rates of formation of precipitation, and the evaporation
rates also ultimately control the aerosol mass that is removed
from the atmosphere.

For the simulation PROG-AP, the mass transfer rates be-
tween the interstitial and in-droplet and in-crystal modes are

shown in Fig.5. This figure is similar to that shown inHoose
et al.(2008a). However, for this study we have used a more
recent model version, and our dust and sea salt emissions
are different with nudged meteorological conditions as com-
pared toHoose et al.(2008a). Similar toHoose et al.(2008a),
cloud droplet nucleation is a dominant process for transfer
to aerosol mass into the in-droplet mode. Our results differ
in that collisions are shown to dominate over nucleation or
freezing for transfer of aerosol into the ice crystals. This is
in agreement with recent work byBaumgardner et al.(2008),
who suggested that impaction scavenging might dominate
over nucleation scavenging for black carbon scavenging into
ice crystals. Our study also implemented the below-cloud
scavenging parameterization ofCroft et al.(2009), which ac-
counts for the higher aerosol removal by below-cloud scav-
enging in comparison to the results in Fig. 6 ofHoose et al.
(2008a). Hoose et al.(2008a) implemented the prescribed
below-cloud scavenging coefficients that are included in the
standard ECHAM5-HAM model.Croft et al. (2009) show
that the below-cloud scavenging with these prescribed co-
efficients is less vigorous than for the new physically de-
tailed aerosol size-dependent parameterization ofCroft et al.
(2009). Sensitivity tests included inHoose et al.(2008a) also
show this same comparison, and find better agreement with
observations for the detailed aerosol size-dependent parame-
terization ofCroft et al.(2009).

3.2 Impacts on predicted aerosol size

Figure 6 shows the zonal and annual mean count median
radius for the CTL simulation, and the percent difference
for the simulations DIAG2 relative to DIAG1, and also for
the simulations DIAG-FULL and PROG-AP relative to the
CTL. As opposed to using the same nucleation scavenging
ratios for the aerosol mass and number distributions (sim-
ulation DIAG1), the implementation of separate mass and
number scavenging ratios gives annual and zonal mean sol-
uble accumulation and coarse mode count median radii that
are smaller by up to 40% and 50%, respectively (simulation
DIAG2). The regions of mixed and ice phase clouds in the
middle and upper troposphere show the greatest sensitivity
for the count median aerosol radius to the implementation of
separate scavenging ratios for aerosol mass and number dis-
tributions. Thus, the implementation of separate mass and
number nucleation scavenging ratios is worthwhile, partic-
ularly for mixed and ice phase clouds. This sensitivity is
not as great for the near surface warm phase clouds since
warm phase clouds had mass and number scavenging ratios
of near to unity for the soluble/internally mixed accumula-
tion and coarse modes in more than 90% of the scaveng-
ing occurrences (see Fig.3). Figure6 shows that the solu-
ble/internally mixed Aitken mode radius does not change by
more than 10% with the implementation of separate mass and
number nucleation scavenging ratios. This lower sensitivity
is expected since the number of occurrences of nucleation
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Fig. 4. Zonal and annual mean sulfate (SO4), black carbon (BC), particulate organic matter (POM), sea salt (SS), and dust (DU) mass
(g m−3, except g S m−3 for sulfate) contained in cloud droplets and ice crystals for the simulation CTL and the percent change in these
scavenged masses for the simulations DIAG-FULL and PROG-AP as compared to the CTL simulation.
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Fig. 5. The zonal and annual mean transfer rates (µg m−2 s−1, except µg S m−2 s−1 for sulfate) between the interstitial, in-droplet and
in-crystal aerosol modes for the simulation PROG-AP due to the processes of emission/formation from gas phase, droplet and ice crystal
nucleation, droplet freezing, aerosol collisions with droplets and ice crystals, below-cloud and in-cloud wet deposition, dry deposition, and
sedimentation.

scavenging for the soluble/internally mixed Aitken mode
is nearly one order of magnitude smaller as compared to
the larger soluble/internally mixed accumulation and coarse
modes.

Figure6 also shows how the zonal and annual mean count
median radius is changed for the simulations DIAG-FULL
and PROG-AP as compared to the CTL simulation. For the
DIAG-FULL simulation, the zonal and annual mean solu-
ble accumulation and coarse mode count median radii are
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Fig. 6. Zonal and annual mean count median aerosol radius (nm) for the CTL simulation for the four soluble/internally mixed modes,
nucleation (NS), Aitken (KS), accumulation (AS), and coarse (CS), and the percent change of the zonal and annual mean count median
aerosol radius for the simulation DIAG2 relative to the simulation DIAG1, and for DIAG-FULL and PROG-AP simulations relative to the
CTL simulation.

reduced by up to 50% in regions of mixed and ice phase
clouds, but the soluble Aitken mode radius is increased by
up to 30%. Conversely, for the PROG-AP simulation the
zonal and annual soluble accumulation and coarse mode radii
are increased by near to 100% throughout much of the lower
and middle troposphere. This increased radius is typical for
prognostic aerosol cloud processing simulations, which in-
clude the process of coagulation of in-droplet and in-crystal

aerosols followed by evaporation or sublimation. This is as-
sociated with the release of larger aerosol particles to the at-
mosphere (Hoose et al., 2008a).

3.3 Impacts on predicted aerosol mass

The zonal and annual mean aerosol mass mixing ratios com-
paring the simulations CTL, DIAG-FULL and PROG-AP are
shown in Fig.7. In comparison to the CTL simulation, both
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Fig. 7. The zonal and annual mean sulfate (SO4), black carbon (BC), particulate organic matter (POM), sea salt (SS), and dust (DU)
mass mixing ratios (µg kg−1, except µg S kg−1 for sulfate) for the simulation DIAG-FULL and the percent change in these masses for the
simulations DIAG-FULL and PROG-AP as compared to the simulation CTL.
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Table 4. Annual and global mean mass burdens (Tg, except Tg S for sulfate) and lifetimes (days) given in brackets immediately following
the burdens, for the five aerosol species, and for the simulations described in Table3. POM refers to particulate organic matter.

Burden (Lifetime) Sulfate Black Carbon POM Dust Sea Salt

CTL 0.843 (4.2) 0.119 (5.6) 1.04 (5.7) 3.60 (3.9) 8.28 (0.56)
F100 0.749 (3.7) 0.109 (5.2) 0.99 (5.4) 3.40 (3.7) 7.86 (0.53)
F100-INT 0.750 (3.7) 0.116 (5.5) 1.10 (6.1) 3.77 (4.1) 7.85 (0.53)
DIAG1 0.965 (4.8) 0.133 (6.3) 1.17 (6.5) 4.10 (4.3) 8.39 (0.57)
DIAG2 0.867 (4.3) 0.122 (5.8) 1.08 (6.0) 3.93 (4.2) 7.99 (0.54)
DIAG-FULL 0.886 (4.4) 0.132 (6.3) 1.11 (6.1) 3.69 (3.9) 7.95 (0.54)
DIAG-FULL-noimp 0.991 (4.6) 0.135 (6.4) 1.13 (6.2) 3.95 (4.2) 8.01 (0.54)
PROG-AP 0.952 (4.8) 0.129 (6.1) 1.13 (6.2) 4.41 (4.6) 11.4 (0.77)
PROG-AP-noimp 1.228 (6.1) 0.186 (8.8) 1.46 (8.1) 4.78 (5.0) 12.9 (0.87)

the DIAG-FULL and the PROG-AP simulations show an in-
crease in dust and carbonaceous aerosol mass mixing ratios
by more than five-fold, and up to two-fold for sea salt and
sulfate near the middle troposphere, and towards the poles
where mixed phase and ice clouds occur. Dust and carbona-
ceous aerosols exist partly in the insoluble modes, which are
not scavenged by nucleation processes. Differences in the
parameterization of impaction scavenging has a greater influ-
ence on these species. It is not intuitive whether an increase
to the scavenged mass (shown in Fig.4) should be associated
with an increase or a decrease in the respective mass mixing
ratio for any given aerosol species since there are a variety
of processes, including rates of scavenging at other altitudes,
evaporation, precipitation removal and transport, which in-
teract to ultimately control the mass mixing ratio. Figure4
shows that the scavenged mass was increased for all aerosol
species towards the upper troposphere, but the sea salt mass
mixing ratios in the upper troposphere are decreased by up to
50%, whereas for the other aerosol species, the mass mixing
ratios were increased at these altitudes.

Table4 presents the annual and global mean mass burdens
and lifetimes for the five aerosol species, and for all the sim-
ulations conducted. The aerosol mass burdens are lower for
the simulation DIAG-FULL, by 7%, 2%, 16%, and 30% for
sulfate, particulate organic matter, dust, and sea salt, respec-
tively, as compared to the PROG-AP simulation. Similarly,
Ghan and Easter(2006) showed that a diagnostic scaveng-
ing scheme under-estimated aerosol burdens by near to 20%
as compared to a prognostic treatment of in-droplet aerosol.
Aerosols are kept within the cloud droplets and ice crys-
tals between time-steps for the prognostic aerosol processing
simulation, and this affects the mass and number of aerosols
available for scavenging into the cloud droplets and crystals
at each time-step, and ultimately the mass distribution.

The simulation F100 allows us to compare the prescribed
ratio approach ofStier et al.(2005) with the simplistic as-
sumption that 100% of the aerosols in clouds are in the
droplets and crystals. This simplistic approach has been used

in global models (Barth et al., 2000). We find that the global
and annual mean aerosol mass burdens in simulation F100
are lower in comparison to the CTL simulation, by up to 10%
for sulfate. The greatest mass burden difference between all
simulations was 32% for the global and annual mean sea
salt burden, between the F100 simulation and the PROG-
AP simulations. Assuming that only the soluble/internally
mixed aerosols are cloud-borne for the simulation F100-INT
as compared to F100 does not affect the sulfate and sea salt
burdens significantly, since these aerosols do not exist in the
insoluble modes. However, the annual and global mean black
carbon and dust burdens are higher by near to 10% when
none of the insoluble aerosols are allowed to be cloud-borne.

Comparing the simulations DIAG1 and DIAG2 illustrates
the impact of diagnosing separate stratiform nucleation scav-
enging ratios for aerosol mass and number distributions. The
global and annual mean mass burdens are higher by near to
10% and 8% for sulfate and carbonaceous aerosols, and 5%
for sea salt and dust for the simulation DIAG1 as compared
to DIAG2, which diagnoses separate mass and number scav-
enging ratios. Thus, particularly for sulfate, diagnosing sep-
arate mass and number nucleation scavenging ratios is of im-
portance.

Table 4 also includes two simulations with the in-cloud
impaction processes turned off, DIAG-FULL-noimp and
PROG-AP-noimp. In comparing these two simulations with
DIAG-FULL and PROG-AP, respectively, impaction scav-
enging is found to have a greater influence on the mass bur-
dens for the aerosol species that occur in the submicron size
modes (sulfate and carbonaceous aerosols), and for the prog-
nostic simulations. Impaction scavenging is particularly rel-
evant for black carbon, which has a significant mass frac-
tion in the insoluble Aitken mode, which is not scavenged
by nucleation processes. The annual and global mean sul-
fate, particulate organic matter, and black carbon mass bur-
dens were reduced by 22%, 23%, and 30%, respectively, for
the PROG-AP simulation as compared to PROG-AP-noimp.
When the in-droplet and in-crystal aerosol concentrations are
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treated prognostically, impaction has a greater effect on the
predicted burdens since impaction continues to add aerosols
to the existing in-droplet and in-crystal concentrations over
successive time-steps, unlike for DIAG-FULL simulation.
To further examine the relevance of the impaction parame-
terization, Sect. 4 will present a comparison of model pre-
dictions of black carbon vertical profiles with observations.

3.4 Impacts on predicted aerosol number

Figure 8 shows the geographic distribution of the ratio of
the number burdens between the F100, DIAG-FULL, and
PROG-AP simulations, and the CTL simulation. For the
PROG-AP simulation only the interstitial number burdens
are shown. The accumulation mode number burdens in the
DIAG-FULL and PROG-AP simulations increase by near to
2 and 5 times, respectively, as compared to the CTL in the
regions of greater stratiform cloud cover, poleward of 30◦.
Ghan and Easter(2006) also found accumulation mode num-
ber burdens higher by up to two times towards the poles for a
prognostic as compared to diagnostic in-cloud aerosol scav-
enging treatment. For the F100 simulation, the accumulation
mode number burdens are lower by up to 20% over the re-
gions of stratiform cloud cover in comparison to the CTL
simulation. However, for the F100 simulation, the nucle-
ation number burdens are significantly increased by up to
five times over the polar regions in comparison to the CTL
simulation. Despite the increased in-cloud scavenging coef-
ficients used in F100, the reduction in surface area available
for sulfate condensation on to the larger aerosol modes leads
to an increase in new particle formation. The annual and
global mean new particle nucleation rate was nearly three
times greater for the F100 simulation as compared to the
DIAG-FULL simulation. For the PROG-AP simulation, the
interstitial coarse mode is reduced by up to half over the
southern oceans. This occurs since the in-droplet and in-
crystal modes (not shown here) contain these aerosols.

Table 5 summarizes the global and annual mean num-
ber burdens for the seven standard modes of the ECHAM5-
HAM. The accumulation mode number burden is increased
by near to 30% and 50% for the DIAG-FULL and PROG-
AP simulations, respectively, relative to the CTL simula-
tion. Ghan and Easter(2006) showed that smaller changes in
global aerosol burdens (near to 20%) changed the magnitude
of the direct and indirect radiative forcing of aerosols on cli-
mate by considerably less than the magnitude of the current
uncertainty associated with these forcings. However, since
we find greater changes to the aerosol number burdens, fu-
ture work should address the impact of changes of this mag-
nitude on the direct and indirect aerosol effects predicted by
our model. Comparing the number burdens for the PROG-
AP and PROG-AP-noimp simulations illustrates the impor-
tance of the impaction parameterization in a global model.
Without any impaction scavenging for the PROG-AP-noimp
simulation, the global, annual mean accumulation number

is increased by near to 60%. As a consquence of this in-
creased surface area, the number of nucleation mode parti-
cles is halved. The F100 simulation has a nucleation mode
number burden that is nearly double that for the DIAG-FULL
simulation since the surface area available for condensation
on to the larger modes is reduced. Since the F100 simula-
tion had more vigourous scavenging, the accumulation mode
number is nearly 30% less for the F100 simulation relative to
DIAG-FULL. A complete examination of the impacts of this
enhanced new particle formation on modeled radiation and
chemistry is beyond the scope of this paper, but should be
examined in future studies. This excessive fine mode particle
production in response to enhanced scavenging is of addi-
tional relevance from an air quality perspective.

3.5 Impacts on predicted aerosol wet deposition

The geographic distribution of wet deposition for the five
aerosol species is shown in Fig.9. For the species that ex-
ist only in the soluble/internally mixed modes, sea salt and
sulfate, there is very little change to the geographic distri-
bution of wet deposition for the DIAG-FULL simulation as
compared to the CTL. For the DIAG-FULL simulation, dust
and the carbonaceous aerosol wet deposition is generally
changed by less than 10% close to the major source regions,
but increases poleward and over the more remote oceans
by near to 100%. Over these more remote regions, these
aerosols will have aged into the soluble/internally mixed
modes, which are scavenged by cloud droplet and ice nucle-
ation. However, the magnitude of the wet deposition is quite
small in these regions. For the PROG-AP simulation, there
are reductions in the wet deposition of sulfate and carbona-
ceous aerosols up to 25% close to the source regions. The
total precipitation, which is also shown in Fig.9 does not
change significantly between simulations, and so these dif-
ferences in wet deposition occur in response to the changes
to the in-cloud scavenging parameterization, as opposed to
changes to the rate of precipitation.

3.5.1 Aerosol mass deposition budgets

Tables6–10 summarize the deposition budgets for the five
aerosol species. The simulation DIAG-FULL shows that
aerosol mass removal by stratiform in-cloud scavenging is
primarily by nucleation as opposed to impaction processes.
Nucleation scavenging accounts for 98%, 94%, 96%, 51%,
and 99% of the total deposition due to stratiform in-cloud
scavenging for sulfate, black carbon, particulate organic mat-
ter, dust, and sea salt, respectively. The remainder is due to
in-cloud impaction scavenging. Below-cloud scavenging ac-
counts for 13%, 14%, 11%, 25%, and 23% of the total annual
and global mean deposition of sulfate, black carbon, partic-
ulate organic matter, dust, and sea salt, respectively for the
simulation DIAG-FULL. For the DIAG-FULL simulation,
in-cloud scavenging accounts for near to 80% of the total
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Table 5. Global and annual mean number burdens (1010m−2) for the nine simulations and for the seven aerosol modes. CD and IC refer to
the in-droplet and in-crystal modes of the prognostic simulation. Abbreviations are defined in Tables 1 and 3.

Number NS KS AS CS KI AI CI CD IC

CTL 18800. 870. 75.1 0.441 8.29 0.031 0.068
F100 31500. 1170. 65.9 0.414 6.84 0.028 0.063
F100-INT 31500. 1160. 67.0 0.430 8.69 0.047 0.081
DIAG1 17600. 668. 87.2 0.476 8.12 0.054 0.089
DIAG2 18700. 737. 88.9 0.483 8.03 0.052 0.088
DIAG-FULL 16700. 610. 94.2 0.470 9.21 0.047 0.083
DIAG-FULL-noimp 15300. 604. 98.6 0.483 10.0 0.056 0.090
PROG-AP 22500. 726. 115. 0.366 6.11 0.055 0.099 5.65 0.457
PROG-AP-noimp 10500. 605. 179. 0.375 11.2 0.069 0.116 10.5 0.683

Table 6. Annual mean deposition of sulfate (Tg S yr−1) due to the processes of in-cloud nucleation and impaction scavenging for warm
(T >273.15 K), mixed (238.15<T ≤273.15 K) and ice phase (T ≤238.15 K) stratiform clouds, combined nucleation and impaction scavenging
for warm, mixed, and ice phase convective clouds, total in-cloud scavenging (ICS), below-cloud scavenging (BCS), dry deposition, and
sedimentation.

Sulfate CTL F100 F100-INT DIAG1 DIAG2 DIAG-FULL PROG-AP

Stratiform clouds
Warm nucleation 23.7∗ 24.6∗ 24.7∗ 23.6 24.6 24.4 18.9∗

Mixed nucleation 13.8∗ 14.1∗ 14.2∗ 10.9 12.2 12.1 8.21∗

Ice nucleation 0.171∗ 0.388∗ 0.388∗ 0.544 0.420 0.444 0.624∗

Warm impaction 0.256 0.119 0.265
Mixed impaction 0.364 0.255 0.392
Ice impaction 0.093 0.079 0.005

Convective clouds
Warm 9.33 9.02 9.02 9.33 9.11 9.06 8.26
Mixed 12.4 12.0 12.0 12.9 12.3 12.4 11.2
Ice 0.72 0.70 0.70 0.78 0.73 0.77 0.70

Total ICS 60.1 60.8 61.0 58.8 59.8 59.9 48.0
Total BCS 9.67 8.96 8.91 10.9 9.97 9.91 14.9
Dry Deposition 2.02 2.00 1.98 1.94 1.91 1.89 3.72
Sedimentation 1.22 1.32 1.24 1.10 1.06 1.04 6.11

∗ Indicates that stratiform nucleation and impaction are included together in the result shown for stratiform nucleation.

removal of sulfate and carbonaceous aerosols, and close to
35% of the total removal of sea salt and dust. Stratiform,
as opposed to convective, in-cloud scavenging accounts for
near to 65% of the total removal of sea salt and sulfate, but
nearer to 40% of the total removal of carbonaceous aerosols
and dust, which have greater sources towards the tropics. Re-
moval by warm phase nucleation (temperatures>273.15 K)
is about twice that of mixed phase nucleation (temperatures
between 273.15 K and 238.15 K) for sulfate and the carbona-
ceous aerosols, whereas for sea salt and dust these processes
are nearly equivalent.

Differences to the parameterization of the impaction scav-
enging process between simulations DIAG2 and DIAG-
FULL, increased the annual and global mean dust and sea

salt removal by impaction by near to 2 orders of magnitude
for the simulation DIAG-FULL. For black carbon, and par-
ticulate organic matter, the impaction scavenging is reduced
by about half in DIAG-FULL as compared to DIAG2. How-
ever, since global and annual mean aerosol mass removal is
not primarily attributed to stratiform impaction processes, the
global and annual mean mass burdens (see Table 4) change
by less than 10% for all aerosol species between simulation
DIAG-FULL and DIAG2.

For the simulation PROG-AP compared to the CTL sim-
ulation, the total aerosol removal by in-cloud scavenging is
reduced by 20 to 25% for all aerosol species, with the greatest
changes for sulfate and sea salt, with a sea salt mass burden
increase of 35%. Evaporation releases considerable aerosol
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Fig. 8. The geographic distribution of the ratio of the vertically integrated number burdens for the four soluble/internally mixed modes –
nucleation (NS), Aitken (KS), accumulation (AS), and coarse (CS) – for the simulations F100, DIAG-FULL, and PROG-AP as compared to
the CTL simulation. For the PROG-AP simulation, these are interstitial mode number burdens only.

mass back to the atmosphere for the PROG-AP simulation.
Increased aerosol burden for prognostic aerosol cloud pro-
cessing simulations has been shown byHoose et al.(2008a)
andGhan and Easter(2006). The aerosol load that remains in
the stratiform cloud droplets is not available for the convec-
tive scavenging, and so the convective in-cloud scavenging
is also reduced by near to 10% for sulfate. Only dust is af-
fected in the opposite sense and the convective scavenging is
actually increased by a few percent. This is expected since
stratiform in-cloud scavenging of dust is a less important sink

compared to other removal processes, and Fig.1 shows that
theHoose et al.(2008a,b) impaction scheme also scavenges
coarse mode particles, such as dust, into the cloud droplets
relatively inefficiently. These results point to the relevance
of developing a convective aerosol processing treatment in
the future that should be coupled with the stratiform aerosol
processing treatment ofHoose et al.(2008a,b).
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Fig. 9. The geographic distribution of sulfate (SO4), black carbon (BC), particulate organic matter (POM), sea salt (SS) and dust annual
mean wet deposition (kg ha−1, except kg S ha−1 for sulfate), and total annual precipitation (m) for the DIAG-FULL simulation, and the
percent change for the simulations DIAG-FULL and PROG-AP as compared to the CTL simulation.
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Table 7. Similar to Table6 except for black carbon deposition (Tg yr−1).

Black Carbon CTL F100 F100-INT DIAG1 DIAG2 DIAG-FULL PROG-AP

Stratiform clouds
Warm nucleation 1.86∗ 2.10∗ 1.86∗ 1.49 1.61 1.75 1.39∗

Mixed nucleation 1.16∗ 1.14∗ 1.17∗ 0.635 0.766 0.861 0.582∗

Ice nucleation 0.014∗ 0.017∗ 0.031∗ 0.055 0.039 0.052 0.073∗

Warm impaction 0.439 0.413 0.088
Mixed impaction 0.217 0.197 0.081
Ice impaction 0.012 0.009 0.001

Convective clouds
Warm 1.04 1.00 1.03 1.06 1.03 1.04 0.972
Mixed 1.86 1.79 1.87 1.92 1.85 1.94 1.77
Ice 0.121 0.116 0.122 0.126 0.121 0.132 0.121

Total ICS 6.06 6.17 6.08 5.95 6.03 5.94 4.96
Total BCS 0.980 0.886 0.955 1.09 1.02 1.09 1.53
Dry Deposition 0.706 0.684 0.711 0.687 0.687 0.701 0.828
Sedimentation 0.024 0.023 0.024 0.024 0.024 0.024 0.436

∗ Indicates that stratiform nucleation and impaction are included together in the result shown for stratiform nucleation.

Table 8. Similar to Table6 except for particulate organic matter (POM) deposition (Tg yr−1).

Organic Matter CTL F100 F100-INT DIAG1 DIAG2 DIAG-FULL PROG-AP

Stratiform clouds
Warm nucleation 14.9∗ 16.3∗ 15.3∗ 12.9 14.0 14.3 9.85∗

Mixed nucleation 6.36∗ 6.20∗ 6.29∗ 3.94 4.66 4.83 3.14∗

Ice nucleation 0.082∗ 0.110∗ 0.169∗ 0.376 0.277 0.318 0.476∗

Warm impaction 1.71 1.53 0.417
Mixed impaction 0.698 0.606 0.299
Ice impaction 0.066 0.045 0.004

Convective clouds
Warm 10.1 9.86 9.99 10.3 10.0 10.1 9.51
Mixed 20.6 20.1 20.5 21.2 20.5 21.1 19.6
Ice 1.40 1.37 1.40 1.45 1.41 1.50 1.40

Total ICS 53.4 53.9 53.7 52.6 53.0 52.9 44.2
Total BCS 6.75 6.32 6.48 7.53 7.12 7.30 11.3
Dry Deposition 5.92 5.88 5.91 5.82 5.83 5.80 7.05
Sedimentation 0.194 0.186 0.187 0.200 0.199 0.203 3.71

∗ Indicates that stratiform nucleation and impaction are included together in the result shown for stratiform nucleation.

3.5.2 Aerosol number deposition budgets

Table11 shows the annual and global mean number depo-
sition attributed to the various physical processes. The di-
agnostic simulations show that aerosol number scavenged in
stratiform clouds is primarily attributed to impaction scav-
enging processes, as opposed to nucleation processes. This is
in agreement with the findings of the one-dimensional study
of Jacobson(2003). For our diagostic scavenging simula-
tions, impaction scavenging rates for aerosol number exceed

the nucleation scavenging rates by more than one order of
magnitude for mixed and ice phase clouds, which account
for 99% of the total number removal in stratiform clouds.
This result is expected since the majority of the aerosol num-
ber is in the nucleation mode that contains aerosols that are
too small to be scavenged by cloud nucleation processes, and
these aerosols are most abundant in the middle and upper
troposphere at the altitudes of mixed and ice phase clouds.
Differences to the parameterization of impaction scavenging
between simulations DIAG2 and DIAG-FULL reduced the
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Table 9. Similar to Table6 except for dust deposition (Tg yr−1).

Dust CTL F100 F100-INT DIAG1 DIAG2 DIAG-FULL PROG-AP

Stratiform clouds
Warm nucleation 25.8∗ 31.5∗ 16.4∗ 15.4 16.8 15.2 10.2∗

Mixed nucleation 29.5∗ 31.7∗ 17.7∗ 10.6 13.8 11.0 7.72∗

Ice nucleation 0.308∗ 0.474∗ 1.04∗ 2.05 1.24 0.964 0.936∗

Warm impaction 0.030 0.027 12.1
Mixed impaction 0.191 0.172 13.6
Ice impaction 0.088 0.085 0.002

Convective clouds
Warm 23.7 22.5 24.4 24.6 24.7 23.2 26.1
Mixed 34.4 32.9 36.0 37.1 36.9 35.1 39.3
Ice 2.31 2.18 2.37 2.41 2.45 2.45 2.69

Total ICS 116. 121. 97.9 92.5 96.2 114. 87.2
Total BCS 81.8 77.4 95.2 103. 99.7 86.8 104.0
Dry Deposition 21.1 20.9 21.7 22.1 22.0 21.4 23.4
Sedimentation 122. 120. 124. 126. 126. 123. 129.

∗ Indicates that stratiform nucleation and impaction are included together in the result shown for stratiform nucleation.

Table 10.Similar to Table6 except for sea salt (Tg yr−1).

Sea Salt CTL F100 F100-INT DIAG1 DIAG2 DIAG-FULL PROG-AP

Stratiform clouds
Warm nucleation 740.∗ 753.∗ 753.∗ 763. 777. 776. 494.∗

Mixed nucleation 624.∗ 701.∗ 704.∗ 572. 622. 629. 310.∗

Ice nucleation 0.41∗ 1.05∗ 1.04∗ 3.06 1.50 1.54 2.64∗

Warm impaction 0.044 0.019 2.64
Mixed impaction 0.096 0.056 3.53
Ice impaction 0.001 0.0004 0.022

Convective clouds
Warm 285. 282. 282. 284. 280. 282. 304.
Mixed 328. 322. 321. 334. 324. 333. 371.
Ice 9.65 9.49 9.49 10.0 9.67 10.2 11.9

Total ICS 1990. 2070. 2070. 1970. 2010. 2040. 1500.
Total BCS 1240. 1200. 1200. 1290. 1260. 1250. 1530.
Dry Deposition 933. 913. 913. 915. 912. 910. 1020.
Sedimentation 1250. 1230. 1220. 1220. 1220. 1210. 1330.

∗ Indicates that stratiform nucleation and impaction are included together in the result shown for stratiform nucleation.

number scavenging for ice clouds by near to 7 times for the
simulation DIAG-FULL. These results suggest that global
modelers should give careful attention to the parameteriza-
tion of impaction scavenging in predicting aerosol number
scavenging in mixed and ice phase clouds. Considering all
aerosol scavenging processes, in-cloud scavenging is the pri-
mary removal mechanism for aerosol number, exceeding dry
deposition by up to one order of magnitude.

4 Comparison with observations

Figures10 and11 show the comparison of the modeled wet
deposition of sulfate with the observations compiled byDen-
tener et al.(2006a), and grouped according to geographic re-
gion. We do not find any statistically significant difference
between the CTL, DIAG-FULL, and PROG-AP simulations
in comparison to these observations. For all these simula-
tions, the modeled deposition is within a factor of two of the
observations for at least 75% of the sites. However, we must
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Table 11.Global and annual mean aerosol number deposition (106 m−2 s−1) summed over all aerosol modes.

Number Dep CTL F100 F100-INT DIAG1 DIAG2 DIAG-FULL

Stratiform clouds
Warm nucleation 1.35∗ 21.3∗ 19.4∗ 0.61 0.64 0.56
Mixed nucleation 16.0∗ 259.5∗ 249.7∗ 0.49 0.53 0.44
Ice nucleation 22.7∗ 779.0∗ 777.8∗ 0.07 0.08 0.06
Warm impaction 1.19 1.33 0.17
Mixed impaction 6.11 8.03 6.32
Ice impaction 36.7 46.3 6.68

Total ICS 45.4 1080. 1070 48.0 59.9 16.8
Total BCS 0.62 4.02 3.90 0.41 0.46 0.30
Dry Deposition 4.86 22.2 21.4 3.06 3.20 2.56
Sedimentation 0.002 0.002 0.002 0.002 0.002 0.002

∗ Indicates that stratiform nucleation and impaction are included together in the result shown for stratiform nucleation.
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Fig. 10. The annual mean sulfate wet deposition (kg SO−2
4 ha−1 yr−1) grouped by regions from observations (Dentener et al., 2006a) as

compared to the simulations CTL, DIAG-FULL and PROG-AP. The first row compiles data from all regions of this figure and Fig.11. NADP
is the National Atmospheric Deposition Program of the United States, EANET is the Acid Deposition Monitoring Network in East Asia, and
EMEP is the European Monitoring and Evaluation Program.
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Fig. 11. The annual mean sulfate wet deposition (kg SO−2
4 ha−1 yr−1) grouped by regions from observations (Dentener et al., 2006a) as

compared to the simulations CTL, DIAG-FULL and PROG-AP. Galloway refers to collection of sites from remote regions of primarily from
the Australian and South American regions, and IDAF refers to a collection of data from Africa (Agac Debits Africa).

bear in mind the majority of sulfate mass, and thus the ma-
jority of the sulfate mass deposition is associated with scav-
enging in the near surface layers where cloud temperatures
are frequently greater than 273 K. Figure3 shows that the
scavenged fractions for the soluble accumulation and coarse
aerosol modes (containing the majority of sulfate mass) are
near to unity for warm phase clouds for both the CTL and
DIAG-FULL simulations. Thus we would expect the simu-
lations to compare equally well with observations for obser-
vations of sulfate wet deposition.

Figure12shows the geographic distribution of the aerosol
optical depth (AOD) for the years 2001–2006, created from
a combination of MODIS (Levy et al., 2007) and MISR
(Diner et al., 2005; Martonchik et al., 2002) retrievals,
as described invan Donkelaar et al.(submitted). The
composite MODIS and MISR dataset is created from the

ensemble of individual retrievals that exhibit little bias ver-
sus ground-based AERONET (Holben et al., 1998) AOD ob-
servations. More specifically, the accuracy of the MODIS
and MISR AOD retrieval over land is evaluated relative to
AERONET AOD on a monthly basis for nine land types
defined using the MODIS BRDF/Albedo product at three
different wavelengths (470 nm, 660 nm and 2.1 µm). Daily
MODIS and MISR AOD retrievals over land types that ex-
hibit a mean monthly bias in excess of either 0.1 or 20% are
rejected. The remaining retrievals over 2001–2006 are aver-
aged. The composite dataset is driven by MISR observations
over bright surfaces where MODIS is biased (Abdou et al.,
2005), and over dark surfaces by MODIS (higher temporal
sampling). MODIS AOD is used over the ocean due to high
sampling frequency and accuracy (Remer et al., 2005). An-
nual mean AOD enhancements of>0.5 reflect a combination
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Fig. 12. The geographic distribution of aerosol optical depth (AOD) at 550 nm from the composite MODIS, MISR, AERONET dataset
compiled byvan Donkelaar et al.(submitted) representing the years 2001 to 2006, and the percent difference of the annual mean AOD for
the simulations CTL, DIAG-FULL, and PROG-AP as compared to the observations.

of mineral dust over and downwind of Africa, as well as large
anthropogenic signals over India and East Asia. Sea salt con-
tributes to moderate AOD enhancements at southern high lat-
itudes.

Figure 12 also shows the geographic distribution of the
ratio of the aerosol optical depth (AOD) for the simulations
CTL, DIAG-FULL, and PROG-AP compared to the observa-
tional dataset. Both the DIAG-FULL and CTL simulations
perform similarly. However, the number of grid points within
25% of the observations is increased by near to 20% over the
oceans for the DIAG-FULL simulation as compared to the
CTL. The PROG-AP simulation has slightly lower AODs
(10 to 20%) over the land, which improves the agreement
with observations over eastern North America and eastern
Europe, but the AOD is considerably over-predicted over the
oceans (up to a factor of two).Hoose et al.(2008a) have
shown that the agreement over the oceans can be improved
with changes to the water uptake on the aerosols, which will
be implemented in future versions of the ECHAM5-HAM.

Hoose et al.(2008a) showed that a prognostic in-cloud
scavenging scheme modified zonal mean aerosol size dis-
tributions in the marine boundary layer to produce better

agreement with the observations ofHeintzenberg et al.
(2000), particularly for the accumulation mode. These obser-
vations are shown in Fig.13. The observations ofHeintzen-
berg et al.(2000) are a compilation of data from different
mobility, and aerodynamic sizing techniques, operated at rel-
ative humidities of<40%, and a multi-modal lognormal dis-
tribution was fitted to the observations. The same methodol-
ogy as described inHoose et al.(2008a) was used for com-
parison with the simulations CTL, DIAG-FULL, and PROG-
AP. Figure13shows that the DIAG-FULL simulation, unlike
the PROG-AP simulation, does not modify the marine accu-
mulation mode size distribution significantly as compared to
the CTL simulation. The Aitken mode number concentra-
tions are under-estimated by up to five times over the south-
ern oceans for all simulations in comparison to the obser-
vations. A considerable reduction in the under-estimation
could be made with changes to the treatment of new particle
formation in the marine boundary layer, which will be im-
plemented in future ECHAM versions. For the DIAG-FULL
simulation, the Aitken mode numbers are reduced by half
in the Southern Hemisphere relative to the CTL simulation,
which is a consequence of the more vigorous scavenging in
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Fig. 13. Zonal mean aerosol size distributions in the marine boundary layer for the simulations CTL, DIAG-FULL, and PROG-AP as
compared to the observations ofHeintzenberg et al.(2000), and similar to Fig. 8 ofHoose et al.(2008a).

the marine boundary layer for the diagnostic scheme. Both
Stier et al.(2005) andHoose et al.(2008a) have shown that
the size distributions for the ECHAM5-HAM model com-
pare quite reasonably with observations. Accurate simula-
tion of the aerosol size distributions in global models is also
essential for the size-dependent in-cloud scavenging param-
eterizations to perform correctly.

RecentlyKoch et al.(2009) presented black carbon pro-
files observed from aircraft in comparison to various global
models. Figures14 and15 compare this same aircraft data
with our model simulations, CTL, DIAG-FULL, and PROG-
AP. Additionally we have included two sensitivity simula-
tions that have the in-cloud impaction processes turned off
for both the diagnostic and prognostic in-cloud scaveng-
ing schemes, DIAG-FULL-noimp and PROG-AP-noimp, re-
spectively. Figure14 shows profiles from the tropics and
midlatitudes taken between the equator, and 50◦ N and be-
tween 120◦ E and 60◦ E and averaged for the same points as
shown inKoch et al.(2009, 2010). Figure15 presents pro-
files from the high latitudes taken between 50◦ N and 80◦ N
and between 180◦ E and 60◦ E and averaged for the same
points as shown inKoch et al.(2009, 2010). These figures

show that the predicted black carbon profiles, particularly
in the middle troposphere differ from the observations, and
between each other, by up to two orders of magnitude de-
pending on the treatment of in-cloud scavenging. Changes
of this magnitude could influence predictions of both the di-
rect and indirect effects of aerosols, particularly related to
black carbon in the middle and upper troposphere. These ef-
fects should be investigated in future studies. For the high
latitude profiles shown in Fig.15, where mixed phase and
ice clouds are more prevalent, the CTL simulation under-
estimates the concentrations by up to two orders of mag-
nitude, and both DIAG-FULL and PROG-AP improve the
agreement to within one order of magnitude. For the simu-
lation PROG-AP, black carbon concentrations are lower by
up to a factor of five, and two in the middle and upper tropo-
sphere, respectively, as compared to the simulation PROG-
AP-noimp. Thus, the parameterization of impaction scav-
enging is particularly relevant for black carbon in mixed and
ice phase clouds.

For black carbon, the parameterization of impaction scav-
enging is of importance since this aerosol has considerable
mass in the insoluble Aitken mode, which is scavenged only
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and 50◦ N, and 120◦ E and 60◦ E, for the same locations as described in Fig. 9 ofKoch et al.(2009), and for the simulations CTL, DIAG-
FULL, and PROG-AP, and with no impaction scavenging for DIAG-FULL-noimp and PROG-AP-noimp. AVE-Houston: NASA Houston
Aura Validation Experiment, CR-AVE: NASA Costa Rica Aura Validation Experiment, TC4: NASA Tropical Composition, Cloud, and
Climate Coupling, CARB: NASA initiative in collaboration with California Air Resources Board.

by impaction processes. This parameterization also relies
on the correct representation of black carbon aging to de-
termine the correct distribution of mass between the solu-
ble/internally mixed and insoluble modes, making prediction
of black carbon concentrations challenging. For seven of the
ten of the profiles presented, the black carbon profile is closer
to the observations for the DIAG-FULL and PROG-AP sim-
ulations as compared to the CTL simulation (changes up to
one order of magnitude), suggesting that the mixed phase
prescribed scavenging fractions of the CTL simulation might
be too large. For the three profiles of Fig.14that show closer
agreement with observations for the prescribed coefficient
scheme of the CTL simulation, the PROG-AP simulation is
a better match to the observations than for the DIAG-FULL
simulation.

4.1 Simulation of210Pb and 7Be

7Be and210Pb have been simulated in global models, and
used as passive tracers for the validation of deposition pa-
rameterizations (e.g.,Brost et al., 1991; Liu et al., 2001;
Feichter et al., 1991; Koch et al., 1996, 2006). Recently,
simulation of7Be and210Pb have been introduced into the
ECHAM5-HAM (Heikkilä et al., 2008, 2009). The method-
ology is described in detail inFeichter et al.(1991); Heikkilä
(2007); Heikkilä et al.(2008). The production rates for7Be
were taken fromMasarik and Beer(1999). The210Pb/radon
source is from soils and was taken to be 1 atoms cm−2 s−1,
following Feichter et al.(1991); Liu et al. (2001); Koch
et al. (2006). 7Be and210Pb are not explicitly distributed
into the aerosol modes of the ECHAM5-HAM. However, the
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Fig. 15. Black carbon concentrations (ng kg−1) from the high latitude aircraft campaigns over the Americas between 50◦ N and 80◦ N, and
180◦ E and 60◦ E, for the same locations as described in detail in Fig. 10 ofKoch et al.(2009), and for the simulations CTL, DIAG-FULL,
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scavenging fractions for7Be are found by taking the ratio
of the total sulfate mass scavenged to the total aerosol mass,
whereas for210Pb the scavenging fractions are determined
by the ratio of the total aerosol mass scavenged to the total
aerosol mass. The rationale is that near the surface where
210Pb is formed, particles are composed of many chemi-
cal compounds, whereas for the7Be source in the strato-
sphere, and upper troposphere, sulfate is the dominant chem-
ical compound. These tracers have been coupled with the
CTL and DIAG-FULL simulations.

Figure16 compares the surface layer concentrations and
wet deposition of these tracers for the simulations CTL
and DIAG-FULL with observations described inHeikkilä
(2007); Heikkilä et al. (2008). The comparison with ob-
served surface layer concentrations and wet deposition is

more robust for210Pb than for7Be since210Pb originates
from surface sources and rarely reaches the stratosphere.
210Pb has a relatively long half-life with respect to radioac-
tive decay processes (22.4 years), but a relatively short at-
mospheric residence time (3–5 days) due to wet deposition
processes. Conversely, the7Be source is in the upper atmo-
sphere and7Be has a shorter half-life (few months). The
longer transport path from source to the cloud levels or sur-
face, coupled with the shorter half-life, increases the un-
certainty associated with comparisons between the modeled
and observed deposition and surface layer concentrations for
7Be. Nevertheless, Fig.16 shows that both tracers are sim-
ulated reasonably in comparison with observations of de-
position and surface layer concentrations. We not find any
statistically significant improvement for the DIAG-FULL
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Fig. 16. Annual mean surface layer concentrations (mBq m−3 at STP) and wet deposition (atoms m−2 s−1) of 210Pb and7Be from
observations described inHeikkilä (2007); Heikkilä et al.(2008) compared to the simulations CTL and DIAG-FULL.

scheme in comparison to the CTL. This is not unexpected
since as discussed in reference to Figs.10 and11, the sur-
face layer concentrations and mass deposition are strongly
controlled by warm cloud scavenging processes, which do
not change as significantly between the various scavenging
parameterizations as does the scavenging in mixed and ice
phase clouds. In making these comparisons, we must also
keep in mind that the deposition observations presented do
not have a global coverage as extensive as for the surface
layer concentration observations. Additionally, there are un-
certainties in the comparison with observations related to dis-
crepancies between the modeled and observed meteorolog-
ical conditions at the measurement sites, and the grid size
of the model which does not resolve local conditions at the
measurement sites. The best correlation coefficients, slope
and offset parameters are for the case of210Pb surface layer
concentrations. However, for both deposition and surface

layer concentration, the DIAG-FULL and CTL simulations
are within a factor of two of the observations at more than
75% of the sites.

Since aerosol concentrations in the middle and upper tro-
posphere are most sensitive to differences in the parameteri-
zation of in-cloud scavenging, we present additional compar-
isons with observed vertical profiles of210Pb,7Be and sulfate
in Figs.17and18. Figure17 repeats the comparisons ofLiu
et al. (2001) for a variety of sites in the Pacific. We have
made this comparison for the same months and regions as de-
fined inLiu et al. (2001). Particularly for the middle latitude
sites (WPML and CPML),210Pb concentrations are underes-
timated by the model in the middle troposphere. The new
diagnostic scavenging for the simulation DIAG-FULL in-
creases the concentrations by up to 30%, which improves the
agreement. However, since these are sites that are also influ-
enced by convective scavenging, revisions to the convective
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scavenging could improve the agreement further. Figure18
shows that the modeled210Pb concentrations for the middle
troposphere of the more northerly latitudes are most sensi-
tive to changes to the stratiform in-cloud scavenging. There
is improved agreement between the modeled annual mean,
and the mean of theKownacka(2002) multi-year (1987–
1998) dataset from Poland between the altitudes of 4 and
8 km, as shown by the right hand column of Fig.18. The
two left hand columns of Fig.18 show aircraft data from the
Environmental Measurement Laboratory described in detail
in Heikkilä (2007). The modeled zonal and annual mean7Be
and210Pb concentrations above 15 km (shown in the two left
columns) are not sensitive to the differences between our in-
cloud scavenging schemes, but are shown to match well with

the observations.7Be is underestimated near the tropopause
as was also found byLiu et al. (2001); Koch et al.(2006);
Heikkilä et al. (2008). Figure 18 also shows a compari-
son with sulfate data from the TRACEP campaign of 2001.
Sulfate concentrations are increased by near to 50% for the
PROG-AP, as compared to CTL simulation, for altitudes near
5 km. This is a smaller change than was found for black
carbon profiles. While this change does not appear to be in
better agreement with the observations, this does not neces-
sarily indicate a problem with the scavenging parameteriza-
tions since SO2 concentrations (not shown) were also simi-
larly high in our model for this same comparison. We must
be careful not to over interpret results from comparison to
aircraft campaigns since the spatial and temporal averaging
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Fig. 18. Vertical profiles of210Pb and7Be concentration (mBq m−3 at STP) observed by aircraft campaigns from the Environment Mea-
surements Laboratory (EML) High Altitude Sampling Program (HASP) are shown in the two left columns, and the mean of the multi-year
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differs between the model and observations. However, these
comparisons do illustrate that the new diagnostic scavenging
parameterization for stratiform clouds works quite reason-
ably, and particularly at mid- and high latitudes does produce
results that agree equally or better with many of the observed
middle troposphere profiles.

5 Summary and conclusions

A cloud nucleation scavenging scheme that diagnoses scav-
enging ratios for aerosol mass and number distributions
based on cloud droplet and ice crystal number concentrations
has been coupled with a physically detailed size-dependent

in-cloud impaction scavenging parameterization, and imple-
mented for stratiform clouds in the ECHAM5-HAM model.
In the global and annual mean, the aerosol mass scavenged
in stratiform clouds was found to be primarily (>90%)
scavenged by nucleation processes, except for dust (50%).
The aerosol number scavenged was found to be primarily
(>90%) attributed to impaction processes. Scavenging in
clouds with temperatures below 273 K accounted for more
than 99% of this number scavenging. The majority of the
aerosol number resides in the nucleation mode size range,
which is too small to be scavenged by cloud nucleation pro-
cesses, and is most abundant in the colder regions of the mid-
dle and upper troposphere.
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Predicted aerosol concentrations, burdens and deposition
have been compared between simulations that implemented
the new diagnostic scheme, the prescribed scavenging
fractions of the standard ECHAM5-HAM, and the prog-
nostic aerosol cloud processing approach ofHoose et al.
(2008a,b). The prescribed fractions approach was the least
computationally expensive, but was not as physically de-
tailed as the diagnostic and prognostic schemes, and was
not able to represent the variability of scavenged fractions,
particularly for submicron size particles and for mixed and
ice phase clouds. As a result, the diagnostic and prognos-
tic schemes are recommended as preferable to the prescribed
fraction scheme. The global and annual mass burdens in-
creased by up to 30% and 15%, for sea salt and dust, re-
spectively, and the accumulation mode number burden in-
creased by near to 50%, for the prognostic scheme relative
to the diagnostic scheme. Aerosol mass concentations in
the middle troposphere were increased, by up to one order
of magnitude for black carbon, for the diagnostic and pro-
gostic schemes compared to the prescribed scavenging frac-
tion approach. Thus, uncertainties in the parameterization
of in-cloud scavenging can lead to significant differences in
predicted middle troposphere aerosol vertical profiles, par-
ticularly for mixed and ice phase clouds. Additionally, we
recommend that the next generation of aerosol microphysi-
cal models should give careful attention to the representation
of impaction processes, particularly in mixed and ice phase
clouds, and for dust at all cloud temperatures. Different
impaction parameterizations changed the global and annual
mean stratiform dust mass removal attributed to impaction
by more than two orders of magnitude, which illustrates the
considerable uncertainty related to in-cloud impaction scav-
enging. For the prognostic scheme, exclusion of parameter-
ized impaction increased the the global, annual accumulation
mode number burden by near to 60%.

In comparison with observations, the prescribed scaveng-
ing ratio scheme of the standard ECHAM5-HAM under-
estimated black carbon profiles observed from aircraft by
up to two orders of magnitude. The revised diagnostic and
prognostic scavenging schemes improved the agreement to
within one order of magnitude. This strengthens our rec-
ommendation of the diagnostic and prognostic schemes as
preferable to the prescribed scavenging ratio approach. In
comparison with observed profiles of210Pb, the new diag-
nostic scheme increased210Pb concentration by up to 30%
in the middle troposphere, which improved the agreement for
several mid- and high latitude sites. Comparing with obser-
vations of sulfate and210Pb wet deposition, the new diagnos-
tic scheme was found to perform similarly to the prescribed
scavenging coefficient approach ofStier et al.(2005). This
was not unexpected since the majority of aerosol mass re-
sides in the lower troposphere where warm clouds are most
frequent. Our results show that the in-cloud scavenging pa-
rameterizations are quite similar for warm phase clouds, and
for the scavenging of the accumulation and coarse aerosol

modes that contain the majority of the mass. The diagnostic
scheme increased the number of grid points within 25% of
the observed aerosol optical depth over the oceans by 20%,
as compared to the CTL simulation that also over-predicted
aerosol optical depth over the oceans. For these comparisons,
we have used a new aerosol optical depth climatology (2001–
2006) produced from a combination of MODIS, MISR, and
AERONET observations, and have used this to evaluate our
simulations.

The prognostic aerosol cloud processing scheme used for
this study does require 10 additional tracers, and thus diag-
nostic scavenging schemes can be desirable in global mod-
els due their relative simplicity. However, prognostic aerosol
processing schemes, such that ofHoose et al.(2008a,b) are
beneficial, and future work should be directed towards ex-
tending this prognostic approach to convective clouds, par-
ticularly since convective scavenging does account for near
to 50% of global wet scavenging. We also recommend that
the more physically detailed impaction scavenging param-
eterization of the diagnostic scheme should be coupled with
the prognostic cloud processing scheme. Since the global an-
nual mean sulfate mass burdens increased by 10% for the di-
agnostic scheme when the mass and number nucleation scav-
enging ratios were equated, as opposed to determined sepa-
rately, we recommend that the prognostic scheme should be
developed to implement separate nucleation scavenging ra-
tios for aerosol number and mass.

Finally, in a more general sense future work should be di-
rected towards examining the influence of these uncertainties
in the parameterization of in-cloud scavenging on the aerosol
direct and indirect effects upon the climate system, particu-
larly given the sensitivity of the predicted middle and up-
per tropospheric aerosol concentrations to the in-cloud scav-
enging parameterization. Additionally, efforts should be on-
going to improve understanding of the impaction scaveng-
ing process, particularly in clouds with temperatures below
273 K. This is relevant since aerosol number scavenging in
stratiform clouds was found to be primarily attributed to the
impaction process in mixed and ice phase clouds, and dust
mass scavenging in stratiform clouds was found to be at-
tributed equally to nucleation and impaction scavenging pro-
cesses.
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