
1 Definition of terms and calculation procedures

1.1 HTDMA errors

The hygroscopic growth factor probability distribution p(GF ) was corrected for
small deviations (typically ±2%RH) from the setpoint RH, as outlined by Gysel
et al. (2009) and calculated as follows:

GFD0,RH,c =

(
1 + (GF

3

D0,RHm
− 1)

(1−RHm)RHt

(1−RHt)RHm

) 1
3

(S1)

where GFD0,RH,c is the RH-corrected, mean, hyrgoscopic growth factor for a
particle of dry diameter D0, GFD0,RHm

is the uncorrected mean growth factor,
RHm is the measured RH and RHt is the target RH. A full explanation of the
correction applied is described by Gysel et al. (2009).

In order to propagate the error associated with the change in growth factor
from this correction, Eq. S1 is differentiated with respect to RHm to give:
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3

(S2)

An error simulation which forms part of the TDMAinv analysis was used
on the data, with the results from the error simulation showing the sensitivity
of the inversion result to small changes in the measurement due to added noise
(incorporating counting statistics). This helps in, for example, judging whether
two peaks in the growth factor probability distribution function, p(GF ), can
be attributed to distinct modes or whether the structure of the p(GF ) can be
reliably attributed to distinct modes or whether they are indistinguishable from
instrument noise. This is outlined in detail by Gysel et al. (2009) and is shown
in Figs. 4B and C therein. 100 error simulations are performed on p(GF ) for
each growth factor bin, and the statistical mean of these taken. The standard
deviation of the mean 100 simulations was then calculated, representing the
effects of counting statistics and variability in size measurement, denoted by
σp(GF ). These two errors are summed in quadrature, representing the HTDMA
error, GFerror:

GFerror =

√(
∂(GFD0,RH,c)

∂(RHm)
0.015

)2

+ σp(GF )
2 (S3)

where 0.015 relates to the precision of the measurement of RH (1.5%) within
the HTDMA used for the COPS experiment.

1.2 Fitting S-step and D-step CCNc data

Defined in the main text, the fitting function used for deriving the point at which
FA(S,D0) = 0.5 is a sigmoidal function using orthogonal distance regression
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(ODR), weighted according to the associated errors in each axis, using the Igor
Pro software package and associated libraries (ODRPACK95, Boggs et al. 1989).

y = K0 +
K1

1 + exp ((x−K2)/K3)
(S4)

Where K0 is the base of the sigmoid (held to zero), K1 is the maximum on the
sigmoid (unconstrained to to minimise effects caused by systematic inaccuracies
of either instrument), K2 is the x value at which y = 0.5 (either, D50,S or Sc,D0,
depending on the x-axis used) and K3 is the rate.

This function is used to derive both D50,S and Sc,D0 for CCNc data. An
example of the sigmoidal fitting to D-step and S-step interpreted data is pre-
sented in Figure S1. The fitting algorithm outputs a standard error of the x-axis
value at y = 0.5. This is the error propagated through further calculations of
quantities such as Dthres and NCCN . S-step analysis is more sensitive to the
relative positions of the data as there are only 5 data points (Fig S1a). Fitting
D-step interpreted data with the sigmoidal function results in fit approaching a
step function (Fig S1b).

1.3 CCNc Measurement Uncertainty

1.3.1 Uncertainty in Sset

In order to estimate the uncertainty in S from the standard deviation of these
quantities, the standard deviation (σ) of each measurement of temperature, flow
and pressure (T,Q and P respectively, which are taken to vary independently)
is multiplied by its differential value, summed in quadrature and divided by the
square root of the number of observations (N ; number of particles measured
during an averaging period) to give the standard error in S:

∆S =

√(
∂S
∂T σT

)2
+
(

∂S
∂QσQ

)2
+
(
∂S
∂P σP

)2
√
N

(S5)

The dependence of ∆S on
√
N arises because the instrument detector (the

OPC) only samples the conditions when a particle is detected. As T , Q and P
have been assumed to vary randomly throughout the measurement period, the
more particles detected, the more precise the average supersaturation will be.

1.3.2 Uncertainty in D0

The range of diameters introduced into the CCNc for a given target diameter
is described by the DMA transfer function. For this analysis, we have assumed
an ideal, triangular transfer function (Knutson and Whitby, 1975), with sym-
metrical bounds 5% either side of the target dry diameter, DT . One standard
deviation of this transfer function is described by σ = c

√
1/6, where c = 0.1DT

i.e. the width of the base of the transfer function. When propagating the error
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associated with the diameter measurement of DT , the standard error of DT has
been used:

∆DT =
c
√

(1/6)√
N

(S6)

where N is the number of particles counted.

1.3.3 Uncertainty in number concentration

The CCNc and CPC number concentration standard errors have been calculated
by invoking Poisson statistics:

∆(
∑

N) =

√ ∑
N

Q
∑
T

(S7)

whereN is the number of particles counted, substituted by either CCNc (N(S,D0))
or CPC (N(D0)), Q is the flow rate and T is the sampling time. The uncer-
tainty in N is calculated and then propagated through the multiple charging
correction procedure.

The error associated with the activated fraction, FA(S,D0) can then be
calculated:

∆(
∑
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N(S,D0)

N(D0)

√(
∆(
∑
N(S,D0))

N(S,D0)
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(
∆(
∑
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N(D0)

)2

(S8)
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2 Supplementary Figures
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Figure S1: a) S-step interpreted data for D0 = 121 nm, showing the relative
number concentrations from CCNc and CPC, with their respective uncertainties
in the top panel, and the bottom panel showing the sigmoid fit to FA(S,D0)
vs Sset. b) D-step interpreted data for the supersaturation setting 0.17%, il-
lustrating the almost step-function sigmoidal fit to the D-step analysis, and
subsequently reduced uncertainty.
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Figure S2: Wind rose centred on measurement location. The prevailing wind
passing up the Rhine valley into the COPS region at around 5m/s average wind
speed (measured at 1166m ABSL, 2m AGL).
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Figure S3: Relative Humidity (RH), organic:sulphate ratio, organic:inorganic
ratio and dNdlogDp for the measurement period, segregated into “cloud pe-
riods” and “no cloud” periods. Cloud periods are defined by RH ≥ 85%
and are characterised by a low organic:inorganic ratio and typically relatively
low number concentrations (D0 < 600 nm). ‘No cloud’ periods are charac-
terised by higher a organic:sulphate ratio and tend to start with high concen-
trations of small (≤ 40nm particles, which grows into a large (≈150nm), strongly
monomodal size distribution.
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Figure S4: Size resolved AMS data for both a) ≤ 4:1 and b) ≥ 4:1 or-
ganic:sulphate ratio periods. The high organic to sulphate ratio periods (b)
show a dramatic relative increase in organics above 100nm, with the majority
of the organic fraction around 300nm.
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Figure S5: A graph showing Sc,D0
−Sset vs D0. The two data points straddling

the zero line are linearly interpolated between, with the intercept defining the
physical threshold diameter of the aerosol, Dthres,Sc. The errors on Dthres,Sc

are propagated using standard procedure.
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Figure S6: A reproduction of Figure 1, focussed on NC1 through NC2, showing
measured HTDMA hygroscopic growth factor probability distribution, p(GF ),
as a function of time. It can be seen that the HTDMA growth factor distribution
is typically well represented by the mean growth factor, GFD0,86%,c, though
there is an increasing prominence of bimodality seen with an increase of size.
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