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Abstract. Analysing satellite datasets over large regions may
introduce spurious relationships between aerosol and cloud
properties due to spatial variations in aerosol type, cloud
regime and synoptic regime climatologies. Using MODer-
ate resolution Imaging Spectroradiometer data, we calculate
relationships between aerosol optical depthτa, derived liquid
cloud droplet effective number concentrationNe and liquid
cloud droplet effective radiusre at different spatial scales.
Generally, positive values ofdlnNe

dlnτa
are found for ocean re-

gions, whilst negative values occur for many land regions.
The spatial distribution ofdlnre

dlnτa
shows approximately the

opposite pattern, with generally postive values for land re-
gions and negative values for ocean regions. We find that
for region sizes larger than 4◦

×4◦, spurious spatial varia-
tions in retrieved cloud and aerosol properties can introduce
widespread significant errors to calculations ofdlnNe

dlnτa
and

dlnre
dlnτa

. For regions on the scale of 60◦
×60◦, these method-

ological errors may lead to an overestimate in global cloud
albedo effect radiative forcing of order 80% relative to that
calculated for regions on the scale of 1◦

×1◦.

1 Introduction

In order to accurately forecast future warming trends, it is
important to quantify present-day radiative forcing due to
aerosols (Andreae et al., 2005; Kiehl, 2007). However, there
is a large uncertainty in the present day total anthropogenic
radiative forcing, and much of this uncertainty is due to un-
certainties in the size of indirect aerosol effects on clouds
(Forster et al., 2007; Denman et al., 2007; Lohmann and Fe-
ichter, 2005).
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One of these effects is the cloud albedo effect, also known
as the first indirect effect. For a cloud of constant liquid wa-
ter content, increasing the number of cloud condensation nu-
clei leads to greater competition for available water vapour,
resulting in a greater number of smaller droplets. This in-
creases the albedo of the the cloud (Twomey, 1977), result-
ing in more shortwave radiation being reflected to space.
A strong correlation between cloud condensation nuclei con-
centrations and aerosol optical depthτa, the total extinction
at a given wavelength due to aerosol in an atmospheric col-
umn, has been observed (Andreae, 2009). This suggests that
τa can be used as a surrogate for cloud condensation nuclei
concentration.

Many observational studies looking of the cloud albedo ef-
fect have been published.Quaas et al.(2008) find that higher
MODerate resolution Imaging Spectroradiometer (MODIS)
τa is generally associated with higher liquid cloud droplet
effective number concentrationNe for clouds with a liquid
water pathw>20 gm−2. Similarly, a surface remote sensing
and in situ study has shown that, for stratus clouds off the
Californian coast, a positive correlation betweenNe andτa
exists (McComiskey et al., 2009). They consider differentw
and spatial resolution constraints. Selecting North Atlantic
stratiform clouds,Kaufman et al.(2005) find a negative cor-
relation between MODIS gridded dailyτa and liquid cloud
droplet effective radiusre, a retrieved estimate of the size of
the droplets near the top of liquid water clouds. They per-
form a multiple regression analysis to investigate the contri-
bution of meteorology to this observed relationship. Using
Along Track Scanning Radiometer ATSR-2 data for differ-
ent regions and seasons,Bulgin et al.(2008) generally ob-
served negative correlations betweenτa and re for clouds
below 3 km, although positive correlations were also often
observed. Kiran et al. (2009) claim that a decrease inre
observed during break spells in the Indian monsoon is due
to an increase in aerosol transport to the continental tropi-
cal convergence zone during the break spells. Using satellite
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data from the POLarization and Directionality of the Earth’s
Reflectances (POLDER) instrument,Bréon et al.(2002) ob-
serve a negative correlation betweenre and aerosol index.

Satellite-observed aerosol and cloud may have differ-
ent vertical distributions and may not actually mix. Us-
ing CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder
Satellite Observation) vertical profile data,Costantino and
Bréon(2010) find that a much stronger correlation between
PARASOL (Polarization and Anisotropy of Reflectances for
Atmospheric Sciences coupled with Observations from a Li-
dar) re and MODIS aerosol index exists for mixed aerosol-
cloud cases that for non-mixed layers in the Eastern South
Atlantic stratocumulus region.

However, observed relationships between aerosol and
cloud properties are not necessarily indicative of causal mi-
crophysical effects. For example, satellite retrieval errors or
meteorological effects, accounted for to differing extents by
the aforementioned studies, may contribute towards the ob-
served correlations (Stevens and Feingold, 2009).

Spatially-varying aerosol and cloud climatologies may
also often contribute towards observed relationships between
aerosol and cloud properties. This may affect the results of
many of the aforementioned studies which analyse data on
a relatively large regional scale:Bréon et al.(2002) conduct
their analysis on a global scale of 360◦

×105◦; Kaufman et al.
(2005) use North Alantic regions of order 100◦

×25◦; Bulgin
et al. (2008) use regions of varying sizes, from 14◦

×8◦ to
360◦

×105◦; Quaas et al.(2008) use continental regions of
order 100◦×40◦. Aerosol type, cloud regime and synoptic
regime climatologies may vary over such large-scale regions.
If data are analysed for the region as a whole, false correla-
tions may be introduced. For example, a hypothetical ocean
region may contain two sub-regions: one characterised by
low thin stratocumulus cloud and biomass burning aerosol;
the other, more remote, characterised by thicker fragmented
cumulus cloud and sea-salt aerosol with a generally lowerτa.
One potential spurious correlation introduced by treating the
two sub-regions as one larger region would be the observa-
tion that higherτa corresponds to thinner clouds with a larger
fractional coverage, relationships which may exist in neither
of the sub-regions if they were to be analysed in isolation.
Similarly, further spurious relationships between other cloud
and aerosol properties may also be introduced by looking at
large regions.

In this study, the following two questions are asked: What
are sensible choices of spatial scale for aerosol-cloud interac-
tion studies? What effect may spatial scale choices have on
global estimates of radiative forcing due to the cloud albedo
effect?

A description of the datasets and methodology used in
this study is provided in Sect.2. Results are presented in
Sect.3 and discussed, with reference to these two questions,
in Sect.4.

2 Method

2.1 Data

The MODIS instruments, onboard the Terra (Kaufman et al.,
1998) and Aqua (Parkinson, 2003) satellites, each observe
the earth using 36 spectral bands (Barnes et al., 1998). Us-
ing these radiances, aerosol and cloud properties are often
retrieved. This study uses MODIS Science Team collec-
tion 5 daily 1◦×1◦ gridded level 3 products retrieved from
Terra-MODIS radiances (MOD08D3) for the ten-year pe-
riod March 2000–February 2010.

Aerosol optical depthτa values from the joint land and
ocean mean aerosol optical depth dataset, retrieved at 550 nm
(Remer et al., 2005), are used here.

For liquid cloud droplet effective radiusre, this study uses
values from the quality-assured liquid cloud effective radius
dataset. Retrievals ofre may be highly unreliable.Bréon and
Doutriaux-Boucher(2005) find a poor correlation between
MODIS and POLDERre over land, with a better correlation
over ocean, although MODISre is generally higher. Since
POLDER is limited to homogeneous cloud fields, their find-
ings apply primarily to homogeneous cloud fields.Marshak
et al.(2006) suggest that the MODISre retrieval may be even
less reliable for inhomogeneous cloud fields. However, a de-
tailed discussion ofre uncertainties is outside the scope of the
current work (see e.g.,Bréon and Doutriaux-Boucher, 2005;
Marshak et al., 2006; Vant-Hull et al., 2007). The MODISre
product has been used in other studies (e.g.,Kaufman et al.,
2005; Kiran et al., 2009).

Theoretical considerations predict that, for constant liquid
water pathw, the cloud albedo effectEr with respect tore
can be written as

Er = −
∂ lnre

∂ lnτa

∣∣∣∣
w

(1)

(Feingold et al., 2001). The requirement of constantw can
be removed by instead considering the cloud albedo effect
EN with respect toNe (Feingold et al., 2001; McComiskey
et al., 2009):

EN =
dlnNe

dlnτa
= 3Er . (2)

Although not a directly-retrieved quantity, liquid cloud
droplet effective number concentration,Ne, is sometimes es-
timated using the adiabatic approximation:

Ne= γ τc
1
2 re

−
5
2 , (3)

where τc is cloud optical depth andγ=1.37×10−5 m−
1
2

(Brenguier et al., 2000; Quaas et al., 2006). This relationship
assumes that liquid water content and liquid cloud droplet
radius increase monotonically with height in the cloud, that
the true droplet number concentration is constant and thatre
is representative of the true liquid cloud droplet radius at the
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Fig. 1. A schematic illustrating the methods used to calculate sensi-
tivities, applied to a 2◦×2◦ region. Each point in the scatter plot rep-
resents a 1◦×1◦ grid box and day for which both cloud and aerosol
data exist. The different colours are used to show data from differ-
ent grid boxes. For simplicity, only a small number of data points
are shown in this schematic.

top of the cloud. If these assumptions are valid, thenNe will
be a good proxy for the true droplet number concentration.
Further discussion about the validity of Eq. (3) is provided
elsewhere (e.g.,Kubar et al., 2009). It is worth noting that
the conclusions presented in Sect.4 are not dependent on the
validity of Eq. (3), and that the current work also presents
results forre, a directly retrieved cloud property.

Ne is calculated by applying Eq. (3) to the liquid cloud
optical thickness and effective radius joint histogram. Thin
clouds are more likely to have unreliablere measurements,
and the retrieval may be less reliable whenre<4 µm (Naka-
jima and King, 1990). FollowingQuaas et al.(2006), clouds
with τc<4 andre<4 µm are excluded when calculatingNe.
It is worth noting that, assuming vertically homogeneousre,
w is calculated as

w =
2

3
ρlτcre (4)

where ρl is the density of liquid water (Platnick, 2000).
Therefore, removing clouds withτc<4 implicitly removes
clouds with smallw in the calculation ofNe. For re=10 µm,
this corresponds to excluding clouds withw<27 gm−2.

Identical sampling has not been applied to the quality-
assuredre used in this study.

The results shown in Sect.3 have not undergone a single-
layer cloud constraint in the calculation ofNe. However,
these results are relatively insensitive to the application of
such a constraint, as will be shown in AppendixA.

2.2 Calculation of sensitivities

Following the method ofQuaas et al.(2008), the sensitivity,
bφ , of a cloud property,φ, to τa is defined here as

bφ =
dlnφ

dlnτa
. (5)

Of interest to this study isbre, the sensitivity ofre, (cf. Eq.1)
andbNe, the sensitivity ofNe, (cf. Eq.2).

When calculating sensitivities at 1◦
×1◦ resolution, Eq. (5)

is applied to data for a given season (December-January-
February DJF, March-April-May MAM, June-July-August
JJA or September-October-November SON) and 1◦

×1◦ grid
box. This methodology can be thought of as calculating the
linear regression slope of a scatter plot of lnφ vs. lnτa, where
each point represents a day for which both aerosol and cloud
data exist for this grid box. The one-sigma error of the re-
gression fit is also calculated.

When moving to larger regions, and ultimately the globe,
there are two possible ways to extend this methodology, as
illustrated in Fig.1. A single scatter plot for the entire re-
gion, where different points represent different combinations
of date and 1◦×1◦ grid box, could be considered. This is the
method used byQuaas et al.(2008, 2009) and is very similar
to the methods used in the studies discussed in Sect.1 (Bréon
et al., 2002; Kaufman et al., 2005; Bulgin et al., 2008). This
is referred to here as the region-method, and its use is indi-
cated by a subscript R, e.g.bNe|R. The region-method sam-
ples both temporal and spatial variability.

Alternatively, values of sensitivity for each individual
1◦

×1◦ grid box could be calculated, before calculating
a mean, weighted by the one-sigma error, for the whole re-
gion. An error-weighted mean is used in order to reduce
the impact of unreliable values with a large error, many of
which may be outliers. This second method is referred to as
the grid-method, indicated by a subscript G, e.g.bNe|G. The
grid-method samples temporal variability only.

In both methods, sensitivities with fewer than five con-
tributing data points are excluded. Further significance test-
ing is also applied, with sensitivities which are insignificant
at the two-sigma level being shown as white in Figs.2, 3, 4
and5. Both the region-method and the grid-method assume
that cloud and aerosol measurements for different grid boxes
and days are independent, an assumption which may cause
the one-sigma errors calculated in this study to be too small.
The validity and effect of this assumption will be discussed
further in AppendixA.

As discussed in the introduction, the region-method has
the potential to introduce a spurious sensitivity signal due
to spurious spatial variations in cloud and aerosol climatolo-
gies. This will be demonstrated by randomly shuffling the
temporal pairing of cloud and aerosol data within each sea-
son and 1◦×1◦ grid box, assuming that aerosol and cloud
properties for different days are independent. (See Figs.2
and4.) The application of this randomisation is indicated by
a subscript Rand, e.g.bNe|R,Rand.

Although the grid-method has the obvious advantage of
reducing spatial gradient methodological errors, the error
weighting may lead to bias towards regions with a small
error in the sensitivity. However, as will be discussed in Ap-
pendixA, this does not appear to be a major problem in this
study.

www.atmos-chem-phys.net/10/11459/2010/ Atmos. Chem. Phys., 10, 11459–11470, 2010



11462 B. S. Grandey and P. Stier: A critical look at spatial scale choices

6 B. S. Grandey and P. Stier: A critical look at spatial scale choices

bNe|R bNe|G bNe|R−bNe|G bNe|R,Rand−bNe|G,Rand

01×01

  

  

 

 
  

  

 

 
  

  

 

 
  

  
 

 

04×04

  

  

 

 
  

  

 

 
  

  

 

 
  

  

 

 

08×08

  

  

 

 
  

  

 

 
  

  

 

 
  

  

 

 

15×15

  

  

 

 
  

  

 

 
  

  

 

 
  

  

 

 

60×60

  

  

 

 
  

  

 

 
  

  

 

 
  

  

 

 

 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4  

 
 

Fig. 3. Annual mean sensitivity of Ne to τa for different region sizes. The first column shows the results when the region–method; the

second column is for the grid–method; the third column is the difference between the region–method and grid–method sensitivities; the

fourth column is the difference when the data has first been randomised within each season and 1
◦×1

◦ grid box. White regions are where

the data is not significantly different from zero at two–sigma confidence. Grey represents missing data.

Fig. 2. Annual (all seasons one-sigma error weighted) mean sensitivity ofNe to τa for different region sizes. The first column shows the
results for the region-method; the second column is for the grid-method; the third column is the difference between the region-method and
grid-method sensitivities; the fourth column is the difference when the data have first been randomised within each season and 1◦

×1◦ grid
box. White regions are where the data are not significantly different from zero at two-sigma confidence, using the error from the sensitivity
regression fit. Grey represents missing data. The four rectangles in the top right hand map indicate the regions commented on in Sect.3.

In order to avoid errors due to retrievals behaving differ-
ently between ocean and land, ocean and land regions are
analysed separately using a 1◦

×1◦ land mask.
Near the poles, where surface ice exists and satellite obser-

vations are at high solar zenith angles, properties retrieved
from satellite data can often be unreliable (e.g.,Liu et al.,
2009). This problem is mostly avoided by limiting this study
to regions between 60◦ N and 60◦ S.

A summary of the notation used in this paper is provided
for reference in Table1.

3 Results

The first column of Fig.2 shows the annual meanbNe|R,
region-method sensitivity ofNe to τa, for different region
sizes. The sensitivities are calculated for each season and

then an error-weighted annual mean is calculated. The top
map, for 1◦×1◦ regions, shows positive sensitivities (red)
over much of the ocean, indicating that higherτa generally
corresponds with higherNe over these areas, as predicted by
the cloud albedo effect conceptual model. In contrast, nega-
tive sensitivities (blue) exist for some land areas, indicating
that higherτa is associated with lowerNe. Much of the map
is white, indicating that the calculatedbNe|R values were of-
ten not statistically significantly different from zero at the
two-sigma confidence level. As the region size increases, the
fraction of the globe containing statisically significantbNe|R
increases substantially.

For the grid-method, shown in the second column of
Fig.2, the statistical significance ofbNe|G also improves sub-
stantially with increasing region size. The general spatial
distribution of grid-method sensitivities is similar to those
of the region-method, withbNe|G being mostly positive over
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Fig. 4. Difference in sensitivity of Ne to τa between the region–method and grid–method for different seasons and two different region

shapes (meridional and zonal). White regions are where the data is not significantly different from zero at two–sigma confidence. Grey

represents missing data.
Fig. 3. Difference in sensitivity ofNe to τa between the region-method and grid-method for different seasons and two different region shapes
(meridional and zonal). White regions are where the data are not significantly different from zero at two-sigma confidence. Grey represents
missing data.

the ocean and negative over land. However, some differences
betweenbNe|R andbNe|G are also evident. For example, over
the North-West Pacific, near East Asia, the 60◦

×60◦ bNe|R is
much larger thanbNe|G.

The difference betweenbNe|R andbNe|G is shown in the
third column of Fig.2. White shows where the difference
is not significantly different from zero at the two-sigma con-
fidence level. The region-method and grid-method only di-
verge at scales larger than 1◦

×1◦, so the 1◦×1◦ bNe|R−bNe|G
map shows no difference between the two methods, as ex-
pected. At 4◦×4◦, differences begin to appear along some
of the coasts and land areas, probably due to surface albedo
changes causing spatially-varying satellite retrieval errors.
At 8◦

×8◦, many more differences can be seen, including
over ocean areas. For 15◦

×15◦ and 60◦×60◦, the presence
of significant differences increases substantially.

These results forbNe|R, bNe|G andbNe|R−bNe|G are rela-
tively insensitive to the the application of a single-layer cloud
constraint, as will be discussed in AppendixA.

In order to demonstrate that the observed differences
occur due to spatial scale changes, the fourth column of
Fig. 2 shows the difference between the region-method and
the grid-method for data which has been temporally ran-
domised within each 1◦×1◦ grid box and season prior to
calculationg the annual mean. This randomisation gen-
erally causesbNe|G,Rand to become insignificantly differ-
ent from zero, with a few statistically significant depar-
tures from zero being the result of noise. The dominant
signal in bNe|R,Rand−bNe|G,Rand is due to spatially-varying
changes inNe and/or τa within regions, either as a re-
sult of physical climatologies or surface albedo changes af-
fecting satellite retrievals. The strong similarity between
bNe|R,Rand−bNe|G,Rand andbNe|R−bNe|G demonstrates that

these sensitivity differences arise as a result of varying cli-
matologies and/or surface albedo within regions.

By looking at different region shapes, it is possible to in-
vestigate whether thebNe|R−bNe|G differences are predomi-
nantly meridional or zonal in nature. Figure3 shows the dif-
ferencebNe|R−bNe|G for different seasons and two different
region definitions: 1◦×15◦ (meridional) and 15◦×1◦ (zonal).
It can be seen that both merdional and zonal changes con-
tribute, with merdional changes being more widespread over
the open ocean.

Four ocean areas are worthy of particular mention: the
Western North Pacific, to the east of China; the Arabian Sea,
between the Horn of Africa and India; the Eastern South Pa-
cific, near the South American coast; and the Eastern South
Atlantic, near the African coast. These four regions are in-
dicated on the map at the top right of Fig.2. Below, each of
these four regions is considered briefly.

Parts of the Western North Pacific, to the east of China,
show a large difference betweenbNe|R andbNe|G at region-
scales of 8◦×8◦ and above (Fig.2), much of which is merid-
ional (Fig. 3). Aerosol properties are known to vary sig-
nificantly within this region, often exhibiting a gradient in
absorptivity and fine-mode fraction with distance from the
coast (Choi et al., 2009). A significant part of this variation
in aerosol properties is meridional.

The Arabian Sea, between the Horn of Africa and In-
dia, also shows a large meridional difference betweenbNe|R
andbNe|G, particularly during the summer months (Fig.3).
This area often contains airborne dust originating from dust
storms, withτa being higher in summer than in winter (Li and
Ramanathan, 2002). The presence of dust often leads to sit-
uations where aerosol and cloud are misidentified (Brennan
et al., 2005), leading to errors in retrieved properties. Since
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Fig. 5. Same as Fig. 3, but for sensitivity of re to τa.

Fig. 4. Same as Fig.2, but for sensitivity ofre to τa.

there is a strong meridional gradient inτa due to dust over
the Arabian Sea (Li and Ramanathan, 2002), this may lead
to a meridionally-varying contribution of contamination to
retrieved properties.

The results presented here suggest that stratocumulus re-
gion indirect effect studies may be particularly susceptible to
spatial scale choices. The Eastern South Pacific stratocumu-
lus region, to the west of Peru and Chile, shows persistent
differences betweenbNe|R and bNe|G (Figs. 2 and 3). In-
terestingly, the Eastern South Atlantic stratocumulus region,
to the west of Africa, shows a negative meridional differ-
ence in MAM but not in other seasons. Aerosol types and
cloud properties are known to vary spatially within these re-
gions (e.g.,George and Wood, 2010), and variations may
have a significant impact on observed aerosol indirect effects
(Andrejczuk et al., 2008). These spatial variations must be
taken into account when studying stratocumulus regions.

Figures4 and5 showbre, the sensitivity ofre to τa, which
exhibits a very similar pattern to Figs.2 and3, except for the
inverted sign and colour bar range. For the first and second
columns of Fig.4, blue regions show wherebre is negative,

indicating that higherτa generally corresponds with smaller
droplets, and red regions show wherebre is positive, indi-
cating that higherτa corresponds with larger droplets. The
aforementioned observations concerning the sensitivity ofNe
also apply to the sensitivity ofre. For example, the third col-
umn of Fig.4 shows that statistically significant differences
betweenbre|G andbre|R emerge as the region size increases.
These differences occur mainly along the coast and over land
at 4◦

×4◦, but are found everywhere at 60◦
×60◦. As before,

the fourth column shows that these differences are similar if
the data have been randomly shuffled within each 1◦

×1◦ grid
box. The four regions commented on above also show large
bre|R−bre|G differences in Figs.4 and5.

Figure6 shows the relative error introduced to the global
average ofbNe through the use of the region-method com-
pared to the grid-method. As expected, this error increases
with region size. This error generally acts such that the
region-method leads to an overestimate ofbNe compared to
the grid-method. For the ocean-land combined and ocean-
only sensitivities, this error increases rapidly to∼5–10% be-
tween 4◦×4◦ and 8◦×8◦. It is at this scale that statistically
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B. S. Grandey and P. Stier: A critical look at spatial scale choices 11465

B. S. Grandey and P. Stier: A critical look at spatial scale choices 9

bre|R−bre|G

DJF MAM JJA SON

01×15

  

  

 

 
  

  

 

 
  

  

 

 
  

  

 

 

15×01

  

  

 

 
  

  

 

 
  

  

 

 
  

  

 

 

 −0.1 −0.075 −0.05 −0.025 0.0 0.025 0.05 0.075 0.1  

 
 

Fig. 6. Same as Fig. 6, but for sensitivity of Ne to τa.

Fig. 5. Same as Fig.3, but for sensitivity ofre to τa.
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Fig. 6. Absolute percentage error in the globally-averaged sensi-
tivity of Ne to τa due to the region-method compared to the grid-
method. The green data line is for land-only, the blue is for ocean-
only and the red is for ocean and land combined. Crosses show
where the region-method leads to an overestimate of the sensitiv-
ity (i.e. the error is positive), and triangles where the sensitivity is
underestimated (the error is negative). As elsewhere in this study,
weighting has been applied using the one-sigma error in the sensi-
tivities. Latitudinal area weighting has not been applied.

significant differences begin to become apparent in many in-
dividual regions, as shown in Fig.2 and commented on ear-
lier. Likewise, as can be seen in Fig.7, for re the region-
method leads to large errors inbre at region scales of 8◦×8◦

and larger. At 60◦×60◦, the ocean-only error inbre grows to
∼470%.

Errors in sensitivities arising due to the region-method will
propogate into associated estimates of cloud albedo effect ra-
diative forcing. Quaas et al.(2008) use large-scale regions,
of comparable size to the 60◦

×60◦ regions used here, to
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Fig. 7. Same as Fig.6, but for sensitivity ofre to τa.

estimate radiative forcing. Their cloud albedo effect radia-
tive forcing scales approximately linearly withbNe. As can
be seen in Fig.6, the application of the region-method at
60◦

×60◦ gives rise to an 80% error (70% error for ocean-
only). This would introduce an estimated error of approxi-
mately 80% to theQuaas et al.(2008) cloud albedo effect ra-
diative forcing estimate, modifying their error estimate from
±0.1 W m−2 to ±0.2 W m−2. Quaas et al.(2008) clearly ac-
knowledge that the uncertainty of their result is likely to be
larger than±0.1 W m−2, due to data and methodolical er-
rors being difficult to account for. The current study helps to
quantify a methodological error.
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Table 1. A summary of the notation used in this paper.

Symbol Meaning

τa aerosol optical depth
re liquid cloud droplet effective radius
w cloud liquid water path
τc cloud optical depth
Ne liquid cloud droplet effective number concentration
φ a general cloud property, eitherre or Ne in this study

γ constant in Eq. (3); =1.37×10−5 m−
1
2

bφ the sensitivity,dlnφ
dlnτa

, of a general cloud property toτa

bNe sensitivity ofNe to τa
bNe|R sensitivity ofNe to τa, calculated using the region-method
bNe|G sensitivity ofNe to τa, calculated using the grid-method
bNe|R,Rand sensitivity ofNe to τa, calculated using the region-method after data randomisation
bNe|G,Rand sensitivity ofNe to τa, calculated using the grid-method after data randomisation
bre sensitivity ofre to τa
bre|R sensitivity ofre to τa, calculated using the region-method
bre|G sensitivity ofre to τa, calculated using the grid-method
bre|R,Rand sensitivity ofre to τa, calculated using the region-method after data randomisation
bre|G,Rand sensitivity ofre to τa, calculated using the grid-method after data randomisation
DJF Dec-Jan-Feb
MAM Mar-Apr-May
JJA Jun-Jul-Aug
SON Sep-Oct-Nov

4 Conclusions

This study aimed to address the two questions stated in
Sect.1: what are sensible choices of spatial scale for aerosol-
cloud interaction studies? What effect may spatial scale
choices have on global estimates of radiative forcing due to
the cloud albedo effect?

In order to address these questions, the effect of calculat-
ing aerosol-cloud relationships in satellite data over a variety
of region sizes from 1◦×1◦ to 60◦

×60◦ was investigated. Us-
ing MODIS satellite data, sensitivities (Eq.5) of derivedNe
to τa and retrievedre to τa were calculated for these different
spatial scale choices.

Generally, positive values of the sensitivity of derivedNe
to τa are found for ocean regions, whilst negative values oc-
cur for many land regions. The spatial distribution of the
sensitivity of retrievedre to τa shows the opposite pattern,
with generally positive values for land regions and negative
values for ocean regions.

It was found that analysing datasets over large regional
scales has the potential to introduce significant errors to
aerosol indirect effect studies. For regions of size 4◦

×4◦,
spatial scale errors are generally small (�10% for the sen-
sitivity of both Ne andre) but often become much more sig-
nificant at region sizes of 8◦×8◦ and larger. At larger region
scales, these errors can become much larger. For example,
for regions of size 60◦×60◦ the global ocean-only error in
the sensitivity ofre is ∼470%. The existence of these spa-

tial scale errors appears to be robust to the application of a
single-layer cloud constraint and also does not appear to be
the result of a sampling bias due to error weighting.

In light of these findings, it seems sensible to recommend
4◦

×4◦ as the largest size of individual regions that should
be used for analysis in aerosol indirect effect studies. Cau-
tion should be applied if looking at larger regions. If data
exist at a higher gridded resolution (e.g. 1◦

×1◦), the possi-
bility of analysing data at this higher resolution should be
seriously considered. Results of calculations done at these
small spatial scales can then be averaged over larger regions,
allowing overall results to be calculated for large regions and
the globe. Of course, it may not always be possible to con-
duct analyses at the small spatial scales recommended here.
Dataset limitations may prohibit this, particularly when extra
temporal and meteorological constraints reduce dataset size.
Potential spatial scale methodological errors should be con-
sidered alongside other considerations.

The results presented in Sect.3 suggest that stratocumulus
regions are particularly susceptible to such methodological
errors, and particular care must be taken when studying such
regions.

For large regions, spatial scale errors may lead to large er-
rors in estimates of global cloud albedo effect radiative forc-
ing. For regions on the scale of 60◦

×60◦, this study suggests
that this methodological error in radiative forcing is of order
80%. The corresponding ocean-only error in radiative forc-
ing is of order 70%.
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This study focuses on the cloud properties,Ne and re,
which are often of interest in cloud albedo effect studies.
The methodological errors explored here highlight a poten-
tial source of inaccuracy in some of the cloud albedo effect
studies mentioned in Sect.1 (e.g.,Bréon et al., 2002; Kauf-
man et al., 2005; Bulgin et al., 2008; Quaas et al., 2008).
Although other cloud properties are not investigated here, it
is likely that similar methodological errors may also affect
the findings of studies which use large regions to investigate
other aerosol indirect effects (e.g.,Koren et al., 2005, 2008;
Jones et al., 2009). However, the additional cloud type and
meteorological constraints applied in several of these studies
may make their results less susceptible to the spatial gradient
effects discussed here.

Finally, it is worth noting that even small regions experi-
ence changes in cloud regime and aerosol conditions, often
as a result of meteorology. This may lead to spurious corre-
lations unaccounted for in this study, and is the basis for fu-
ture work. One possible further approach would be to inves-
tigate the contribution of temporal climatological gradients,
analogous to the spatial gradients discussed here. However,
although seasonal temporal scale choices should be consid-
ered, this would not fully account for meteorological effects.
The development of more advanced methods to investigate
the contribution of meteorology to observed aerosol-cloud
relationships would be highly beneficial.

Appendix A

Discussion of methodological choices

When calculating the sensitivities shown in Sect.3, no
single-layer-only cloud constraint was applied, a decision
which has the potential to impact the results. The decision to
use one-sigma error weighting also has the potential to im-
pact the results through the introduction of a sampling bias.
When calculating errors, it was assumed that data for dif-
ferent grid boxes and days are independent. The discussion
below briefly discusses the implications of these three deci-
sions, focusing on theNe sensitivities. It is found that theNe
results are relatively robust with respect to these decisions. It
is likely that the same would apply to there results.

A1 The effect of not applying a single-layer cloud
constraint

TheNe andre results presented in Sect.3 and the first row of
Fig. A1 are for all liquid clouds (i.e. no single-layer cloud
constraint has been applied). For comparison, the annual
mean 60◦ ×60◦ Ne sensitivities shown in the second row of
Fig. A1 useNe values calculated from the single-layer cloud
histogram. As can be seen by comparison of the first and sec-
ond rows, although some of the details may change, the ap-

plication of a single-layer constraint does not appear to have
a significant effect here. In particular, the general global pic-
ture ofbNe|R−bNe|G changes little.

A2 The effect of one-sigma error weighting

Weighting by the one-sigma error when calculatingbNe|G for
regions larger than 1◦ ×1◦ and multi-season means of both
bNe|G andbNe|R has the potential to introduce a bias towards
regions and seasons with a low one-sigma error. In order
to demonstrate that this potential problem does not appear
to be the major contributor to the region and grid method
differences discussed in this paper, the third row of Fig.A1
shows annual mean 60◦

×60◦ Ne sensitivities calculated with
no error weighting. As can be seen by comparison of the first
and third rows of Fig.A1, the overall global picture remains
similar.

A3 The assumption of data independence

When calculating errors for the insignifance masks, it was
assumed that data for different grid boxes and days are inde-
pendent. This assumption may not be valid, because cloud
and aerosol properties may often have significant autocorre-
lations at spatial scales greater than one degree and temporal
scales longer than one day (e.g.Anderson et al., 2003). Due
to this assumption of independence, the one-sigma errors cal-
culated in this study may be too small.

In order to test the robustness of some of the results
presented in Sect.3 to the possibility of data dependence,
let us consider a situation where only125 of our data may
be truly independent. This will result in a scaling of the
independence-assumed errors by a factor of

√
25= 5. When

testing for insignificance, a two-sigma mask on the new er-
rors would therefore correspond to a ten-sigma mask on the
old independence-assumed errors, as shown in the final row
of Fig. A1. Comparison of the final rows of Figs.2 andA1
shows that the possibility of data dependence may increase
the number of regions wherebNe|R−bNe|G is insignificant.
However,bNe|R−bNe|G remains significant for the majority
of regions.
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Fig. 1. Annual mean sensitivity of single-layer-only Ne to τa for regions of size 60
◦×60

◦. The first column shows the results for the

region-method; the second column is for the grid-method; the third column is the difference between the region-method and grid-method

sensitivities. The first row shows the results for when the single-layer cloud constraint is not applied to the calculation of Ne and for when

one-sigma error weighting is used to combine sensitivities for 1
◦×1

◦ grid boxes to 60
◦×60

◦ regions (grid-method) and sensitivities for

individual seasons to annual means (both methods), like the bNe results shown in Fig. 3; the second row shows the results for when the

single-layer cloud contraint is applied to the calculation of Ne; the third row shows the results for when error weighting is not used. No

insignificance mask has been applied here. Grey represents missing data.

Fig. A1. Annual mean sensitivity of single-layer-onlyNe to τa for regions of size 60◦ ×60◦. The first column shows the results for the
region-method; the second column is for the grid-method; the third column is the difference between the region-method and grid-method
sensitivities. The first row shows the results for when the single-layer cloud constraint is not applied to the calculation ofNe and for when
one-sigma error weighting is used to combine sensitivities for 1◦

×1◦ grid boxes to 60◦ ×60◦ regions (grid-method) and sensitivities for
individual seasons to annual means (both methods), like thebNe results shown in Fig.2; the second row shows the results for when the
single-layer cloud contraint is applied to the calculation ofNe; the third row shows the results for when error weighting is not used; the
fourth row shows the results for when a ten-sigma insignifcance mask is applied. No insignificance mask has been applied to the first three
rows.
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