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Abstract. Transport of aerosols in pollution plumes from the
mainland Asian continent was observed in situ at Jeju, South
Korea during the Cheju Asian Brown Cloud Plume-Asian
Monsoon Experiment (CAPMEX) field campaign through-
out August and September 2008 using a 3-laser photoacous-
tic spectrometer (PASS-3), chemical filter analysis, and size
distributions. The PASS-3 directly measures the effects of
morphology (e.g. coatings) on light absorption that tradi-
tional filter-based instruments are unable to address. Trans-
port of mixed sulfate, carbonaceous, and nitrate aerosols
from various Asian pollution plumes to Jeju accounted for
74% of the deployment days, showing large variations in
their measured chemical and optical properties. Analysis
of eight distinct episodes, spanning wide ranges of chemi-
cal composition, optical properties, and source regions, re-
veals that episodes with higher organic carbon (OC)/sulfate
(SO2−

4 ) and nitrate (NO−3 )/SO2−

4 composition ratios exhibit
lower single scatter albedo at shorter wavelengths (ω405).
We infer complex refractive indices (n− ik) as a function
of wavelength for the high, intermediate, and low OC/SO2−

4
pollution episodes by using the observed particle size dis-
tributions and the measured optical properties. The small-
est mean particle diameter corresponds to the high OC/SO2−

4
aerosol episode. The imaginary part of the refractive index
(k) is greater for the high OC/SO2−

4 episode at all wave-
lengths. A distinct, sharp increase ink at short wavelength
implies enhanced light absorption by OC, which accounts for
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50% of the light absorption at 405 nm, in the high OC/SO2−

4
episode. Idealized analysis indicates increased absorption at
781 nm by factors greater than 3 relative to denuded black
carbon in the laboratory. We hypothesize that coatings of
black carbon cores are the mechanism of this enhancement.
This implies that climate warming and atmospheric heating
rates from black carbon particles can be significantly larger
than have been estimated previously. The results of this study
demonstrate ways in which atmospheric processing and mix-
ing can amplify particle light absorption for carbonaceous
aerosol, significantly at short wavelength, underscoring the
need to understand and predict chemical composition effects
on optical properties to accurately estimate the climate radia-
tive forcing by mixed carbonaceous aerosols.

1 Introduction

Understanding long-range transport (LRT) of pollutants is
crucial to inform and implement international and/or regional
policies on air-quality (UN-ECE, 2009) and climate change
(IPCC, 2007). Outstanding issues include the quantification
of aerosol radiative forcing, which depends on composition,
mixing state, size, and morphology, as well as the attribution
of sources of trans-boundary pollution. Carbonaceous (black
carbon and organic carbon, primary and secondary organ-
ics, mixed and processed carbon) aerosols found throughout
the atmosphere including in large scale Atmospheric Brown
Clouds (ABCs) absorb solar radiation, warm the atmosphere,
could enhance snow pack and ice sheet melting, and can sup-
press rainfall over vast polluted regions (Ramanathan and
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Carmichael, 2008). Large scale ABCs are prominent con-
tributors to the continental Asian pollution plume, which en-
trains regional anthropogenic and natural emissions, whose
composition changes with age as it is transported over the
Pacific (Dunlea et al., 2009). Optical properties and atmo-
spheric lifetimes of carbonaceous aerosol depend strongly on
their size distribution, composition, and mixing state; all of
which evolve with age. Therefore, process level understand-
ing of the optical properties of Asian carbonaceous aerosol
outflow during its transport across distances up to thousands
of kilometers lasting several days is essential to evaluate their
radiative forcing of climate. Globally, black carbon aerosols
are thought to be the second most important anthropogenic
warming influence on climate (Jacobson, 2001; Ramanathan
and Carmichael, 2008), and the warming is sensitive to opti-
cal properties and mixing state models (Myhre, 2009), both
of which are uncertain (IPCC, 2007). It is critical to increase
our knowledge of carbonaceous aerosols to inform policy
much more precisely on how lowering carbonaceous aerosol
emission will reduce global warming, change hydrological
cycles, and enhance air quality within weeks of taking ac-
tions (Zhang et al., 2009, 2010). More knowledge on car-
bonaceous aerosol is needed to catalyze their inclusion in
the post Copenhagen Accord emissions reductions negotia-
tions which are currently confined to long-lived greenhouse
gases. This would also allow the rapidly growing economies
in China and India to enhance air quality to improve human
health as well as reduce their climate forcing in the short term
as they transition to lower carbon-intensive energy and car-
bon sequestration technologies in the long-term.

Radiative forcing by carbonaceous aerosol is often esti-
mated, in part, using particle mass absorption cross sections
(MAC), the wavelength-dependent light absorption coeffi-
cient normalized by particle mass in units of m2/g. Car-
bonaceous aerosols are operationally defined as mixtures of
elemental carbon (EC) or black carbon (BC) and organic
carbon (OC) species traditionally determined by thermo-
gravimetric, chemical, and optical analysis of samples col-
lected on filters (Schauer et al., 2003; Chow et al., 2009). So-
called brown carbon (BrC) is a sub-set of OC, delineated by
its light absorption at UV and visible wavelengths (Andreae
and Gelencser, 2006). Brown carbon can be directly emit-
ted by combustion, e.g. (Chakrabarty et al., 2010), and can
be produced by chemical reactions within the particle after
its emission (Hecobian et al., 2010). Calculation of radiative
forcing properties for aerosol of any composition is based on
its MAC(λ); while the importance of processes influencing
MACEC(λ) has become recognized recently, including large
enhancement of BC light absorption by coatings observed
in laboratory studies, (Bond and Bergstrom, 2006; Cross
et al., 2010) mechanistic understanding for MACBrC(λ) for
carbonaceous aerosol remains poorly constrained. Imag-
ing and chemical analysis of pollution impacted samples
demonstrate that mixed black carbon, sulfate, and organic
aerosol from biomass and fossil fuel combustion are perva-

sive (Adachi and Buseck, 2008; Posfai et al., 1999). Opti-
cal properties of such complex carbonaceous aerosol are es-
timated using idealized treatments of their mixing state – ex-
ternal, internal, or core (Bond et al., 2006; Jacobson, 2001)
and depend significantly on approximations which introduce
large uncertainties in their forcing. Field observations of op-
tical, chemical, and microphysical properties of mixed car-
bonaceous aerosol are essential to identify and develop val-
idated relationships to accurately quantify radiative forcing
and heating rates in climate models. Developing such rela-
tionships from the CAPMEX data set is the goal of our study.

The CAPMEX field campaign was designed to moni-
tor continental outflow from Asia and to observe the effect
of Asian emissions (including mixed carbonaceous aerosol
from a wide variety of source regions) on atmospheric radi-
ation especially during enforced air quality control periods
surrounding the summer 2008 Beijing Olympics (Ramana et
al., 2010). In this paper we demonstrate correlations between
simultaneous and independent measurements of aerosol op-
tical properties as a function of wavelength and chemical
composition at the CAPMEX field site, the Gosan Observa-
tory. The observatory is located on the western side of Jeju
Island, a resort island approximately 1100 km southeast of
Beijing; and is not affected by major local industrial pollu-
tion sources and has been used to observe continental out-
flow from Asia for several years (Chen et al., 1997; Topping
et al., 2004; Clarke et al., 2004). Distinct plumes undergoing
transport from Asia with different chemical composition are
delineated and analyzed to show that aerosol light absorption
depends strongly upon the OC/SO2−

4 composition, particu-
larly at short wavelengths. Furthermore, we use observed
particle size distributions and optical properties to infer an
effective mean complex refractive index (n− ik) for ambient
carbonaceous aerosol as a function of their OC/SO2−

4 com-
position.

2 Methods to measure optical properties, composition,
and size distributions

2.1 3-laser photoacoustic spectrometer

A 3-laser photoacoustic spectrometer (PASS-3, Droplet
Measurement Technologies, Inc., Boulder, CO), a commer-
cial extension of prototypes originally developed at Desert
Research Institute and the University of Nevada, Reno
(Lewis et al., 2008), was used to measure aerosol absorp-
tion and scattering coefficients (βabs andβsca) at the Gosan
Observatory. The PASS-3 uses 405, 532, and 781 nm diode
lasers aligned in an acoustic resonator and measures aerosol
absorption coefficients (βabs) using the photoacoustic effect.
Particle heating by light absorption creates an acoustic wave
that is measured by a microphone. The lasers are amplitude-
modulated to isolate frequencies close to the resonance fre-
quency of the acoustic cavity, and lock-in detection is used to
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maximize the S/N ratio. The instrument simultaneously mea-
sures scattering coefficients (βsca) at the same wavelengths as
absorption using a cosine square weighted detector inside the
cavity at right angles to the sample flow. This configuration,
where bothβabsandβscaare measured simultaneously from
particles in air, allows for reliable measurement of the aerosol
single scatter albedo [ω = βsca/(βabs+βsca)]. Regular back-
ground measurements (duty cycle= 0.72) are made to allow
for background interpolation and correction for laser power
drifts during the deployment. The detection limits (10 min
signal integration) are 1.5 Mm−1 for βabs and 2.0 Mm−1 for
βscaat 405 nm, 2.0 Mm−1 for βabsand 3.0 Mm−1 for βscaat
532 nm, and 0.15 Mm−1 for βabs and 1.0 Mm−1 for βsca at
781 nm (see Supplement for a short description of PASS-3
calibration and performance characteristics and also (Cross
et al., 2010) for laboratory comparison). We stress that the
PASS-3 measures optical effects of coatings, morphology,
and chemistry on light absorption directly that the traditional
filter-based sensors fail to do, particularly in polluted envi-
ronments (Subramanian et al., 2007; Lack et al., 2008).

Theβscaat 405 and 781 nm were used to calculate the in-
tensiveÅngstr̈om exponent of light scattering (Å405

sca), which
depends on particle size,

Å
405
sca =

−ln
(

βsca(λ1)
βsca(λ2)

)
ln

(
λ1
λ2

) (1)

whereλ1 = 405 nm andλ2 = 781 nm. Smaller particles ex-
hibit larger Å405

sca. In order to diagnose the absorbing com-
ponent of the aerosol, the̊Angstr̈om exponent ofβabs (de-
fined in complete analogy with (1) but for the absorption co-
efficient βabs) at 405 relative to 532 nm,̊Aabs(405/532), as
well asÅabs(405/781), were also calculated. Strong absorp-
tion wavelength dependence (Åabs> 1.6) indicates organic
carbon absorption, e.g. BrC (Bond and Bergstrom, 2006;
Gyawali et al., 2009; Lack and Cappa, 2010). Additionally
the intensive single scatter albedo (ωλ) were calculated us-
ing,

ωλ =
βsca(λ)

βabs(λ)+βsca(λ)
(2)

whereλ refers to any one of the PASS-3 laser wavelengths,
781, 532, and 405 nm.

2.2 Filter analysis of mass and composition

Elemental carbon (EC) and organic carbon (OC) mass were
obtained daily from quartz-based filter measurements at
the Gosan Observatory using thermal-optical and chemical
methods. 24-h average particulate matter samples were col-
lected for laboratory-based chemical analysis. The commer-
cially fabricated sampler (URG-3000 ABC, URG Corpora-
tion, Chapel Hill, North Carolina, USA) was used to collect
four PM2.5 samples downstream of two cyclones and four
PM10 samples downstream of the PM10 inlet. Sampler flow

rates were controlled with the use of a vacuum pump and
critical orifices and were measured by a calibrated Rotome-
ter before and after sample collection. Both pre-baked quartz
filters (47 mm, Tissuquartz, Pall Life Sciences, East Hills,
New York, USA) and Teflon membrane filters 47 mm, Teflon
Membrane, 2.0 mm pore size, Pall Life Sciences) were used
for sample collection facilitating different chemical measure-
ments. Field blanks were collected over the course of the
sampling effort.

One PM2.5 and one PM10 quartz fiber filter were analyzed
for elemental carbon and organic carbon (EC and OC) as de-
scribed by (Schauer et al., 2003) using a common thermal-
optical method and protocol. The Teflon filters were weighed
before and after sampling to determine particle mass con-
centrations using a microbalance in a relative humidity and
temperature controlled room. Subsequent to final weighing,
one PM2.5 and one PM10 Teflon filter were extracted in de-
ionized water and analyzed by ion chromatography for in-
organic ions including sulfate ion, nitrate ion, chloride ion,
ammonium ion, sodium ion, potassium ion, and calcium ion
as described by (Stone et al., 2010). Uncertainties for the
organic carbon mass were∼0.20 µg m−3 and∼0.15 µg m−3

for elemental carbon.

2.3 Particle size distributions

The particle number size distributions were measured with
two sizing instruments, a scanning mobility particle sizer
(SMPS, Model 3034, TSI, Shoreview, MN USA), which
includes an on-line condensation particle counter (CPC),
and an aerodynamic particle sizer (APS, Model 3321, TSI,
Shoreview, MN USA) spectrometer. Particles between 10.4
and 469.8 nm were measured by the SMPS and the larger par-
ticles (532–19 800 nm) were measured by an aerodynamic
particle spectrometer (APS), both instruments using logarith-
mic bin widths of 0.03. The on-line CPC counted particles
with diameters greater than 3 nm.

2.4 Back trajectories

NOAA HYSPLIT five-day back-trajectories for each day of
the 61 days of the CAPMEX deployment are included in
the Supplement to trace the path(s) the air mass had taken
to Jeju and to assist in determination of the origin, evolution,
and duration of each pollution transport episode (Draxler and
Rolph, 2003). We focus on episodes for which we have both
optical property and composition data.

3 Results and discussion

3.1 Optical properties

We expect aerosols undergoing transport from Asia to the
Gosan Observatory to be well mixed in aged air masses
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Fig. 1. Temporal profile of aerosol scattering coefficient (βsca), absorption coefficient (βabs), scatteringÅngstr̈om exponent (̊A405
sca), single

scatter albedo at 405 nm (ω405), PM2.5 mass, scaled sulfate and ammonium, and elemental and organic carbon masses (µg m−3) for the
CAPMEX campaign. The periods highlighted in ash are Asian aerosol transport episodes and their diagnosis as such is discussed in the text.
The blue lines represent the 405 nm data, the green line represents the 532 nm data, and the red line represents the 781 nm data.

where atmospheric processing over several days likely in-
creases internal mixing of the aerosol components thereby
producing more uniform intensive optical properties. The
continuous 10-min average observations ofβsca andβabs at
405, 532, and 781 nm, the calculated (Å405

sca) andω405 for the
CAPMEX deployment are shown in Fig. 1 and are used to
separate Asian transport from local pollution episodes. The
definition of the pollution episodes is verified by analyzing
the back-trajectories for each episode.

In Fig. 1, aerosols arriving at Jeju during the periods high-
lighted in ash show enhanced scattering and absorption sig-
nals and relatively uniform intensive propertiesÅ405

sca and
ω405 compared to periods shown in white, which are dom-
inated by local inputs, and/or precipitation events whereβabs
and βsca are low and the intensive optical properties are
highly variable. We identify aerosol pollution episodes oc-
curring on 3, 6–8, 13–23, 27–31 August, and 3–13, 16–
20, 21–25, and 27–29 September (hence referred to as
episodes 1–8) at Gosan stemming from transport of polluted
Asian air masses (further evidenced by back trajectories).
Over the transport episodes in CAPMEX, the meanβabs at
405 nm during Asian transport episodes varies between 11
and 17 Mm−1 while βsca varies between 42 and 411 Mm−1.
At 532 nm, the meanβabs varies between 4 and 9 Mm−1

while meanβsca varies between 23 and 280 Mm−1 and at
781 nm, meanβabs varies between 3 and 5 Mm−1 while the
meanβscavaries between 17 and 188 Mm−1.

We observe theÅngstr̈om exponent of absorption
(Åabs(405/781)) is nearly constant (mean values∼2.0) for
all transport episodes, indicating significant influence of ab-
sorbing organic material in each episode. To further diagnose
the absorbing organic component, we use theÅngstr̈om ex-
ponent of absorption (̊Aabs(405/532)), where the wavelength
dependence is strongly influenced by organic content and we
expect to see strong increases in the wavelength dependence
at short wavelengths corresponding to absorption by organic
material. TheÅngstr̈om exponents over both wavelength
ranges are included with the optical properties in Table 1. All
Åabs(405/532) are 2.9 or greater with the largest being 3.8 oc-
curring during episode 8, indicating the optical properties in
episode 8 are possibly influenced by absorption enhancement
at shorter wavelength due to OC.

3.2 Chemical composition

Independent mass and chemical information was assembled
from simultaneous analysis of aerosol collected on quartz fil-
ters from 24-h periods during most of the campaign. The
measured PM2.5 total mass temporal profile (in µg m−3) in-
cluded in Fig. 1 agrees very well with theβsca profile, in-
dependently separating Asian transport from local input pe-
riods. Also shown in Fig. 1 is the temporal profile of sul-
fate (SO2−

4 ), ammonium (NH+4 ), OC, and EC as well the
temporal profile of the OC/SO2−

4 ratio. Sulfate and ammo-
nium concentrations track the scattering observations while
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Table 1. Aerosol absorption and scattering coefficients at 405 nm,ω405, Å405
sca, Ångstrom exponents of absorption, with 1σ standard devi-

ations in parenthesis observed for pollution episodes and background periods during the 2008 CAPMEX field campaign. The background
data is taken during the CAPMEX deployment when the Gosan Observatory was not experiencing one of the eight aerosol episodes. The
statistics for the optical data are taken from 10 min averaged signal from the PASS-3.

Episode Dates βabs βsca ω405 Å405
sca Åabs(405/781) Åabs(405/532)

1 3 Aug 10.8 (2.8) 411.2 (187.9) 0.95 (0.09) 1.2 (0.1) 2.2 (0.6) 4.0 (3.6)
2 6–7 Aug 16.6 (5.7) 187.7 (76.8) 0.91 (0.03) 1.5(0.1) 1.8 (0.4) 2.6 (1.8)
3 13–23 Aug 11.0 (6.3) 174.8 (114.5) 0.93 (0.05) 1.5(0.4) 2.1 (1.2) 2.9 (3.5)
4 27–31 Aug 11.5 (5.7) 100.4 (35.8) 0.90 (0.04) 1.7 (0.5) 2.1 (0.8) 3.3 (3.6)

5 3–12 Sep 11.4 (6.0) 103.8 (33.1) 0.90 (0.04) 1.6 (0.4) 2.1 (0.8) 3.6 (3.6)
6 16–20 Sep 12.6 (6.3) 165.7 (100.6) 0.93 (0.05) 1.5 (0.5) 2.0 (1.0) 3.0 (3.3)
7 21–25 Sep 12.5 (6.7) 149.6 (75.9) 0.91 (0.04) 1.3 (0.4) 1.9 (1.0) 2.8 (3.4)
8 27–29 Sep 10.6 (4.6) 41.4 (16.1) 0.79 (0.06) 1.5(0.9) 2.1 (0.3) 3.8 (3.4)

Bkg. 5.5± 3.6 34.6± 21.0 0.84 (0.11) 1.49 (1.3) 2.88 (1.7) 3.13(5.3)

EC (and OC) measurements track the absorption measure-
ments indicating independent, consistent, and robust plume
identifications. We focus our discussion on OC/SO2−

4 and
NO−

3 /SO2−

4 ratios as metrics for aerosol composition since
they vary significantly due to changes in source regions and
the transport trajectory of the plumes (see Table 2).

The individual pollutants are enriched during transport
episodes, though by varying amounts. The SO2−

4 mass (from
the PM2.5 fraction) changed the most, episodic mean levels
varied between 2.8 and 12.3 µg m−3, while there was less
variation in OC (1.1–1.9 µg m−3) and NO−

3 (0.7–1.9 µg m−3)

in transport episodes. Episode 3 has the largest sulfate mass
(12.3 µg m−3) and the lowest OC/SO2−

4 and NO−

3 /SO2−

4 ra-
tios. This is consistent with back trajectories originating, at
early times, 13–16 August, from the South China Sea and at
late times, 17–23 August, northeast of Jeju and becoming en-
riched in sulfate pollution from southeastern China, an area
influenced by a large number of power plants. The sulfate
mass is comparable to a similar episode reported by Topping
et al. (14.48 µg m−3 averaged over a 4 day episode originat-
ing in mainland China and passing through the southeastern
part of China on its way to Jeju). Episode 8 exhibits the
lowest sulfate mass (2.8 µg m−3) and highest OC/SO2−

4 and
NO−

3 /SO2−

4 ratios of any episode in the deployment. The
back trajectories originate in Siberia, where approximately
75 forest fires burned between 24 and 30 September 2008
(FIRMS, 2009). We expect the fire-impacted air mass to be
rich in organics, and to entrain nitrogen-rich urban pollution
and a modest amount of sulfate as the plume traverses north-
eastern China, an area with a lower number of power plants.
In both the ACE-Asia (Topping et al., 2004) and CAPMEX
results presented here, the OC/SO2−

4 and NO−

3 /SO2−

4 ratios
are also lowest for air masses originating east of Beijing and
traveling through southeastern China along their path to Jeju
and highest for air masses originating in Siberia and north-

east China. Episodes 4-6 are intermediate in sulfate mass
as well as OC/SO2−

4 and NO−

3 /SO2−

4 ratios, and followed
circuitous trajectories through the Sea of Japan, traversing
over Japan and Korea, as well as remote continental Asian
locations (see Table 2). In the next section our analysis will
show that enhancements in particle organic carbon and ni-
trate relative to sulfate lead to increased light absorption at
short wavelengths, underscoring the importance of treating
such chemical effects on optical properties explicitly in cli-
mate and chemistry models.

3.3 Optical property and chemical composition
relationships

We show the relationships between mean chemical compo-
sition (OC/SO2−

4 and NO−

3 /SO2−

4 ) and the intensive optical
propertiesω405 andÅabs(405/532) for episodes 3–8 in Fig. 2.
These empirical correlations provide important clues to how
chemical composition affects optical properties. The mea-
suredω405 correlates inversely with the mean OC/SO2−

4 and
NO−

3 /SO2−

4 ratios, for carbonaceous aerosol originating from
a range of source regions. Episode 8 has the lowestω405
and highest OC/SO2−

4 and NO−

3 /SO2−

4 ratios; episode 3 ex-
hibits the highestω405 and lowest OC/SO2−

4 and NO−

3 /SO2−

4
ratios. A variety of mechanisms, chemical and morpholog-
ical, that could be responsible for the observed correlations
are discussed and analyzed below. Nitrate rich plumes origi-
nate from NOx source regions where subsequent heteroge-
neous processing can enrich particle phase nitrate. If or-
ganics are present in the plumes, there is potential to form
organic nitrates in the particle phase. Organic nitrates are
known to absorb light at short wavelengths and are likely pro-
cessed to the particle phase during LRT of pollution plumes
rich in organics and nitrogen species such as episode 8 (Ja-
cobson, 1998, 1999). Secondary acid-catalyzed reactions

www.atmos-chem-phys.net/10/10387/2010/ Atmos. Chem. Phys., 10, 10387–10398, 2010
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Table 2. Mass data (µg m−3) for Asian pollution transport episodes observed during CAPMEX. The uncertainty represents one standard
deviation of the mean of the daily mass or ratio determined for each day in the episode. The last two columns are composition ratios and are
unitless.

Episode OC EC PM2.5 NO−

3 SO2−

4 OC/SO2−

4 NO−

3 /SO2−

4

1
2
3 1.1± 0.5 0.1± 0.1 48.0± 26.6 0.74± 0.4 12.3± 9.0 0.12± 0.1 0.11± 0.10
4 1.6± 0.7 0.2± 0.1 28.5± 4.6 1.1± 0.3 5.4± 0.9 0.31± 0.1 0.20± 0.10

5 1.7± 0.4 0.2± 0.1 31.0± 10.0 1.2± 0.3 5.6± 2.0 0.32± 0.1 0.23± 0.10
6 1.9± 1.3 0.3± 0.2 33.3± 22.3 1.4± 0.9 5.0± 3.0 0.36± 0.1 0.26± 0.10
7 1.3± 0.5 0.2± 0.1 53.8± 16.0 1.3± 0.2 8.6± 6.6 0.15± 0.1 0.13± 0.10
8 1.5± 0.4 0.2± 0.1 21.5± 4.0 1.9± 0.9 2.8± 0.2 0.56± 0.1 0.69± 0.30

have also been shown by several groups to produce light ab-
sorbing organic material in aerosols (De Haan et al., 2009;
Noziere et al., 2007; Shapiro et al., 2009; Bones et al.,
2010). To assess the role of acid-catalyzed secondary re-
actions, we estimate the acidity of particles by calculating
the ratio of measured molar concentration of major cations
[NH+

4 /18 and Na+/23]measto the molar concentration of an-
ions needed to neutralize [NH+4 +Na+]meas, taken as the sum
of the molar concentration of the major anionic species [NH+

4
and Na+]pred=[2×SO2−

4 /96+NO−

3 /62+Cl−/35.5] (Zhang et
al., 2005;Zhang et al., 2007). We include Na+ due to the
influence of sea-salt throughout the campaign. Dissolved
organic acids may make a minor contribution to the charge
balance but were not measured and are not considered here.
When [NH+

4 +Na+]meas/[NH+

4 + Na+]pred ≈ 1.0, the parti-
cles can be considered neutralized in the bulk and when
the ratio is<0.75 the particles are acidic. For the particles
in CAPMEX we calculate [NH+4 +Na+]meas= 1.13± 0.06
[NH+

4 +Na+]pred−0.00006±0.0109, indicating the particles
are not acidic in the bulk and does not support the hypoth-
esis that light-absorbing material arose from acid-catalyzed
reactions. However, particle nitration reactions may have a
substantial effect on aerosol light absorption, especially un-
der the transport conditions encountered here.

The changes in mass of OC and NO−

3 are relatively small
across the transport episodes, what changes significantly is
the relative SO2−

4 percent composition (86% in episode 3,
44% in episode 8, see Table 2). The changes in com-
position, size distribution, and mixing state influence the
optical properties in pollution transport episodes observed
during of CAPMEX. The decrease inω405 could be at-
tributed to reduction in particle size (which is observed di-
rectly and discussed in Sect. 3.4), thereby decreasingβsca,
or to changes in particle composition. To separate these
effects, bothÅ405

sca and Åabs(405/532) are plotted as func-
tions of composition (OC/SO2−

4 ) and included in Fig. 2.
The increase in̊Aabs(405/532) observed with increasing OC
fraction demonstrates that enhanced short wavelength ab-

sorption possibly associated with aerosol organic material
plays a major role in the reduction ofω405. Furthermore,
a similar strong positive trend exists (though not shown in
Fig. 2) forÅabs(405/532) vs. NO−3 /SO2−

4 ratios during trans-
port episodes in CAPMEX. Large poly-aromatic hydrocar-
bons and nitrated PAH molecules exhibit electronic absorp-
tion bands in the visible and could potentially be significant
in this case as products of heterogeneous atmospheric pro-
cessing (Ruiz-Morales and Mullins, 2007). In contrast, we
find thatÅ405

sca increases slightly with increasing OC/SO2−

4 ra-
tios, showing the smaller particles more frequently occurred
during the intermediate and high OC/SO2−

4 events, a fact ver-
ified by the measurements of size distribution (Sect. 3.5).
This is consistent with aged, mixed OC, sulfate, and nitrate
aerosols exhibiting a propensity to absorb more light in the
blue causing reduction ofω405.

3.4 Brown carbon mass absorption cross section
(MAC BrC ) and coating effects on elemental carbon
MAC (MAC EC)

We use the chemical composition andβabs(λ) data to
separate brown carbon, elemental carbon, and coat-
ing (morphological) contributions to total aerosol mass
absorption cross sections using an empirical model:
(MACtotal = MACEC+ MACBrC). We have calculated the
episodic MACtotal by dividing the measured absorption by
the sum of measured OC and EC mass for each OC/SO2−

4
episode [MACtotal(λ) = βmeas

abs (λ)/(ECmass+OCmass)].
To estimate absorption by “uncoated” soot, we use
published MAC values (10.6± 0.6 m2 g−1 at 405 nm,
7.32± 0.5 m2 g−1 at 532 nm, 4.24± 0.2 m2 g−1 at
781 nm) for denuded soot collected in a recent labora-
tory study (Cross et al., 2010). We then multiply our
observed ECmass by the aforementioned MAC to esti-
mate the light absorption from uncoated elemental carbon
(βest

abs= MACdenuded soot× ECmeas
mass) at each PASS-3 wave-

length. We then postulate OC absorption is negligible at
781 nm and dominated by black carbon and empirically
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Fig. 2. Single scatter albedo at 405 nm plotted against OC/SO2−

4 and against NO−3 /SO2−

4 , Åabs(405/532) plotted vs. OC/SO2−

4 , andÅ405
sca

vs. OC/SO2−

4 for episodes 3–8 of CAPMEX. The highestω405 occurred for the lowest OC/CO2−

4 ratio (0.93 and 0.12; episode 3) and the

lowestω405 occurred for the highest OC/SO2−

4 ratio (0.79 and 0.56; episode 8).

determine a factor that best matchesβest
abs to our measured

βabs(781 nm); (βest
abs= f × βmeas

abs ). We interpretf as the
absorption enhancement factor for the coating and find that
this ranges from 3–6 (at 781 nm) for the transport episodes in
CAPMEX. This is attributed to the net absorption enhance-
ment by clear and/or absorbing coatings on elemental carbon
aerosol cores. Our values are much higher than the en-
hancement reported in limited observational studies (Cross
et al., 2010) (Schwarz et al., 2008). We hypothesize that
large enhancements observed in CAPMEX can result from
increased coating thickness during aerosol transport than in
laboratory studies (Cross et al., 2010) and also the mixed
carbonaceous aerosol may contain material that absorbs in
the red (Gyawali et al., 2009; Garland et al., 2008). Thick
coating on mixed carbonaceous aerosol are pervasive in
polluted environments, as reported in the Mexico City out-
flow where morphological analysis demonstrated that black
carbon were coated 55% of the time with a median volume
fraction of 15% (Adachi and Buseck, 2008). Additionally,
we are able to determine percent contributions of EC and
EC coating to the overallβmeas

abs at each wavelength using
[βest

abs(λ)/βmeas
abs (λ)]. We find elemental carbon absorption

and the coating effect accounted for 73% ofβabs(405 nm) in
episode 7 and 99% ofβabs(532 nm) in episodes 5 and 8. The
smallest coating effect was observed during episode 8 (33 %
at 405 nm).

Finally, we are able to estimate MACBrC for carbonaceous
aerosols from our CAPMEX data. The difference between
our βmeas

abs (405 nm) andβmeas
abs (532 nm) compared withβest

abs
(at 405 and 532 nm) is attributed to brown carbon absorption
(additional absorption than has been accounted for by the
coating of elemental carbon cores). We determine MACBrC
by [(βmeas

abs −βest
abs)/OCmass]. We infer MACBrC ranging be-

tween 2.1± 0.1 and 3.4± 0.1 m2 g−1 at 405 nm and between
0± 0.1 and 1.0± 0.1 m2 g−1 at 532 nm and that brown car-
bon accounts for up to 50% ofβmeas

abs (405 nm) in episode 8
and up to 20% ofβmeas

abs (532 nm) in episode 2. Table 3 ex-
hibits the MACBrC and absorption fractions for each episode.
Similar MACs for OC have been reported (Favez et al., 2009)
and similar EC and OC contributions to total aerosol absorp-
tion have been observed for ambient mixed carbonaceous
aerosol (Barnard et al., 2008; Clarke et al., 2004). Our anal-
ysis elucidates how light absorption is enhanced by brown
carbon directly and indirectly by coatings on elemental car-
bon cores for the CAPMEX episodes. We find that coated
EC makes a considerable contribution at 405 and 532 nm
for all episodes except for the fire-impacted episode 8. Our
MAC results for brown and coated elemental carbon should
be valuable for constraining MACEC and MACBrC for car-
bonaceous aerosol and quantitatively determining their im-
pacts on radiative forcing and photochemistry.

3.5 Wavelength dependent refractive indices from size
and optical properties

Particle number size distributions were measured during
CAPMEX using both SMPS and APS particle sizers. The
SMPS and APS particle diameters are merged into a distri-
bution covering 10.4 to 19 800 nm. The APS particle aero-
dynamic diameters were converted to actual diameters using
a procedure outlined by (Hand and Kreidenweis, 2002). A
reference particle density of 1.6 g cm−3 is assumed through-
out. We have separated the number size distributions into
three groups according to the OC/SO2−

4 ratio, the same as
for the optical property correlations: high (mean distribution
for episode 8), intermediate (mean distribution for episodes
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Table 3. Mass Absorption Cross Sections (MACtotal), brown carbon MAC (MACBrC), enhancement factor (f ), and percent contribution to
total absorption [βabs(405 nm) andβabs(532 nm)] for Asian transport episodes observed during CAPMEX.

Episode MACtotal MACBrC f EC EC+coat OC EC EC+coat OC

405 nm 532 nm 781 nm 405 nm 532 nm 781 nm 405 nm 532 nm

3 9.0± 0.1 4.8± 0.1 2.6± 0.1 3.4± 0.1 1.0± 0.1 0.4± 0.1 6.0 0.10 0.65 0.34 0.17 0.82 0.17
4 6.0± 0.1 3.1± 0.1 1.4± 0.1 2.6± 0.1 0.8± 0.1 0.1± 0.1 3.5 0.18 0.64 0.36 0.23 0.80 0.19
5 6.3± 0.1 2.6± 0.1 1.7± 0.1 2.5± 0.1 0.0± 0.1 0.2± 0.1 4.3 0.16 0.66 0.34 0.23 0.99 0.01
6 5.0± 0.1 2.2± 0.1 1.2± 0.1 2.1± 0.1 0.2± 0.1 0.0± 0.1 3.0 0.22 0.67 0.32 0.31 0.93 0.07
7 8.5± 0.1 4.3± 0.1 2.6± 0.1 2.8± 0.1 0.4± 0.1 0.3± 0.1 4.3 0.17 0.73 0.27 0.22 0.93 0.07
8 5.6± 0.1 1.6± 0.2 1.2± 0.1 3.4± 0.1 0.0± 0.2 0.3± 0.1 3.2 0.16 0.49 0.51 0.31 0.99 0.01

4, 5, 6) and low (mean distribution for episodes 3, 7). The
merged results for the high, intermediate, and low OC/SO2−

4
episodes are shown in Fig. 3. We find mean particle diam-
eters calculated from each merged size distribution for the
OC/SO2−

4 ratio groups are 72.4 nm, 92.5 nm, and 124.5 nm
for the high, intermediate, and low OC/SO2−

4 ratios, respec-
tively. A shift to smaller size at higher OC/SO2−

4 ratios is
consistent with expectations based on back-trajectories and
distinct chemical compositions of the sources. The mean
particle diameters are also consistent with the slight rise in
Åsca(405/781) with increasing OC/SO2−

4 as shown in Fig. 2.
The CPC total count is used to adjust the total concentration
count and account for particle losses within the SMPS. The
SMPS plus APS size distributions, together with the CPC
total count, are used as constraints to determine effective re-
fractive indexes inferred from fitting the mean aerosol opti-
cal properties measured by the PASS-3. The ratio defined
asACPC= CPC/SMPS is on average 4.2 over the data range
available during the entire campaign; however, this value is
highly variable for the different episodes; therefore to fur-
ther constrain its value, we adjustedACPC by constraining
the fitted real part of the index of refraction for the aerosol
measured during the low OC/SO2−

4 episodes. For this case
we assumed tabulated values for the real part of the index of
refraction for sulfate and for EC and OC in the green, and
derived a volume-averaged value ofn = 1.435 (d’Almeida
et al., 1991; Bond and Bergstrom, 2006). The reason for
using the low OC/SO2−

4 episode as a constraint is that the
EC and OC component contribute minimally to the real in-
dex of refraction at 532 nm and therefore the exact value of
their refractive indices is not critical. A particle count adjust-
ment factorACPC= 3.78 was found by forcing the fitting to
n = 1.435 and theACPC was used for the rest of the fitting
analysis. The fitting is done using a homogeneous sphere
Mie theory code to match the optical property observations
(absorption and scattering at three wavelengths) for the high,
medium, and low OC/SO2−

4 cases as discussed next.
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Fig. 3. Particle number size distribution measured with SMPS and
APS systems during CAPMEX. The mean particle diameters cal-
culated from the number distributions are 72.4 nm, 92.5 nm, and
124.5 nm for the high, intermediate, and low OC/SO2−

4 episodes
and their locations in the number distribution are shown by the
color-coded arrows.

To retrieve the complex refractive indices (n− ik) for all
cases for different wavelengths, we follow the procedure de-
scribed next. Using the scaled observed number size distribu-
tions (ACPCdN /dlogDp) for particles smaller than 2000 nm,
we vary the real and imaginary parts of the refractive in-
dex to match the mean values of the observedβabs(λ) and
βsca(λ) independently for each PASS-3 wavelength. We then
calculate a weighted average residual between the measured
and the calculatedβabs(λ) andβsca(λ) and take the average
and the standard deviation of the indices of refraction that
result in a discrepancy between the predicted and measured
data that is below 5%. The 5% threshold was chosen as a
conservative representation of the measurement uncertainty.
This fitting process is repeated for each of the OC/SO2−

4
cases to determine effective bulk imaginary indices of re-
fraction for ambient mixed carbonaceous aerosol undergoing
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transport to Jeju. The complex refractive indices for each
of the high, intermediate, and low OC/SO2−

4 episode groups
are separated into their real and imaginary parts and plotted
against wavelength in Fig. 4. The error bars represent only
the standard deviation of the mean of the real and imaginary
parts of the refractive index and do not include other sources
of uncertainties (e.g. uncertainties in particle concentration).
The mean particle diameters and wavelength dependent com-
plex refractive indices for the low, intermediate, and high
OC/SO2−

4 cases are listed in Table 4.

Enhanced absorption by organic and nitrate rich aerosol is
evident in the observed increase of the imaginary part of the
refractive index (δk/δλ) and by the enhanced rate of increase
with wavelength (k/λ) at short wavelengths. The imaginary
part of the refractive index (k) is greater for larger OC/SO2−

4
ratios at all wavelengths. A distinct, sharp increase ink at
short wavelength (405 nm) for the high OC/SO2−

4 episode
implies enhanced light absorption by OC in this forest-fire
impacted plume (Chakrabarty et al., 2010). As the OC/SO2−

4
ratio increases, (δk/δλ) increases as well. The highest value
at 405 nm fork (0.029) is observed for the high OC/SO2−

4
episode 8. We hypothesize that the absorption enhance-
ment at short wavelength is due to absorption by OC (e.g.
large polyaromatics) or by OC processed in the presence of
NOx to particle phase organic nitrates. We also note that
there is short-wavelength enhancement ink for each episode,
showing the general absorption enhancement of OC, which
is present in each composition ratio group. The largest en-
hancement fork (200%; (k405 nm)/(k781 nm)) is calculated for
the high OC/SO2−

4 episode, also corresponding to the low-
estω405 measured for any aerosol transport episode in the
campaign. The enhancement is less for medium and low
OC/SO2−

4 and NO−

3 /SO2−

4 ratios (∼150%), which indicates
that ω(λ) is determined by the amount of OC, NO−

3 and
SO2−

4 in mixed carbonaceous aerosol, primarily at shorter
wavelengths. Taken together, the in situω(λ), composition,
and size distribution measurements, and the calculated com-
plex refractive indices corroborate reports of enhanced short
wave absorption in remote column radiance data for carbona-
ceous aerosol made in Mexico City (Barnard et al., 2008),
for example. Additionally, the wavelength dependence of
our complex refractive indices at 405, 532, and 781 nm de-
termined from our direct and comprehensive in situ mea-
surements of aged, complex mixed carbonaceous aerosol at
Cheju over a 2 month period are consistent with analysis of a
handful of quartz filter samples of much less aged urban pol-
lution and smoke samples (from Weizmann Institute rooftop
in Rehovot, Israel) at 390 and 532 nm reported by (Dinar et
al., 2008), and the complex refractive index at 550 nm from a
similar size-resolved optical property analysis of some fresh
biomass smoke samples in the laboratory (Hungershoefer et
al., 2008).

We compare the complex refractive indices derived above
with independently measured PM2.5 total mass, ECmass, and
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Fig. 4. Complex refractive index for calculated for low, medium,
and high OC/SO2−

4 episodes in CAPMEX. The color-coding is

analogous to Fig. 3, the high OC/SO2−

4 case is in blue, the inter-

mediate OC/SO2−

4 in black and the high OC/SO2−

4 case in red.

OCmasscomposition data for closure and to quantify the ef-
fects of mixing and processing. The mean EC and OC mass
percentage of PM2.5 total mass are 0.3 and 2.8% for the low
OC/SO2−

4 case, 0.7 and 5.6% for the intermediate OC/SO2−

4
case, and 0.7 and 7.8% for the high OC/SO2−

4 case. Using
our derived k values at 781 nm, we can estimate the episodic
coating factor (f ) by considering the ratio:f = kcalc

781/((EC
PM2.5 mass %/100)×kref

781), wherekref
781 = 0.71, the wave-

length independent imaginary component of the refractive
index of soot (Bond and Bergstrom, 2006). Estimation of
f in this fashion for the each of the OC/SO2−

4 cases gives
coating enhancement factors of 3.1, 2.0, and 2.7. These ab-
sorption enhancements at 781 nm are smaller (due to mass
based approximate optical calculations) but are consistent
with the mean coating enhancement factors 5.2, 3.6, and
3.2 calculated independently for the low, intermediate, and
high OC/SO2−

4 cases in Sect. 3.4. The largest enhancement
is predicted for the low OC/SO2−

4 case with either method
and the higher OC/SO2−

4 cases exhibit similar mean pre-
dicted absorption enhancements. Additionally, we are able
to separatekEC from kBrC using (kcalc

405 − kcalc
781) and deter-

mine an effectivek
′

BrC that matches the episodic OC PM2.5
mass percent from the filter analysis, i.e. OC mass percent
%= [(kcalc

405 −kcalc
781)/k

′

BrC]×100. Thek
′

BrC term describes the
imaginary component of the refractive index of the non-
soot material in the aerosol, likely a mixture of absorbing
OC and nitrated-OC. Optimizingk

′

BrC for all three cases,
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Table 4. Mean particle diameters and complex refractive indices for the low, intermediate, and high OC/SO2−

4 cases in CAPMEX. The
complex refractive indices are calculated from an iterative procedure constrained by observed wavelength dependent optical properties,
discussed in the text. The mean particle diameters are calculated from the merged particle number size distributions in each of the low,
intermediate, and high OC/SO2−

4 cases.

Composition ratio Mean particle diameter Wavelength/nm Complex refractive index

low OC/SO2−

4 124.5 nm 405 1.440± 0.01–0.012± 0.001i
532 1.434± 0.01–0.008± 0.001i
781 1.542± 0.01–0.007± 0.001i

intermediate OC/SO2−

4 94.5 nm 405 1.590± 0.01–0.017± 0.001i
532 1.547± 0.01–0.013± 0.001i
781 1.668± 0.01–0.011± 0.001i

high OC/SO2−

4 72.5 nm 405 1.492± 0.01–0.029± 0.001i
532 1.426± 0.01–0.017± 0.001i
781 1.524± 0.02–0.015± 0.001i

we determine thatk
′

BrC = 0.17, 0.11, and 0.16 match the
OC PM2.5 mass percent for the high, intermediate, and low
OC/SO2−

4 cases, respectively. Many poly-aromatics and ni-
trated PAH species havek values between 0.1 and 1 near
400 nm, see table 3 in Jacobson (1999), and their forma-
tion and entrainment in particles, especially during trans-
port, can increase short wavelength absorption appreciably.
We have closed the loop between the particle size distribu-
tions, chemical composition, and optical properties to show
how the chemistry and morphology of mixed carbonaceous
aerosol can significantly increase their ability to absorb sun-
light, thereby forcing climate and altering local photochem-
istry.

4 Conclusions and significance

Transport of absorbing carbonaceous aerosols accounted for
76% of the observation time on Jeju, South Korea in August
and September 2008. We sampled a range of polluted air
masses with varying amounts of particle carbon, sulfate, or-
ganics, and nitrate. Direct photoacoustic measurements of
intensive optical properties are empirically correlated with
chemical composition observations. Episodes with high
OC/SO2−

4 and NO−

3 /SO2−

4 ratios exhibit lowerω405, which
is corroborated by the optical closure analysis. We close the
loop between particle size, composition, and optical property
data by using them to extract wavelength-dependent complex
refractive indices over a range of OC/SO2−

4 ratios. We pre-
dict the largestk (0.029) at 405 nm for episode 8, which has
the highest OC/SO2−

4 ratio, and the imaginary component is
2.4× greater thank predicted at 405 nm for the low OC/SO2−

4
case. We used the complex refractive indices to make simi-
lar quantitative conclusions about the coating absorption en-
hancement factor compared with an analysis based solely on

chemical composition and optical properties. Also, we show
that MACBrC can represent a substantial part of the total
MAC for carbonaceous aerosol. Overall, our findings under-
score the manner in which OC can enhance light absorption
by coating and mixing with EC and exhibits how absorbing
and non-absorbing components of carbonaceous aerosol can
moderate absorption across the visible spectrum.

A recent study shows that a small reduction in global
mean aerosol single scatter albedo (0.986 to 0.970 at 550 nm)
from a higher absorbing carbonaceous fraction increases
the net anthropogenic radiative forcing to−0.3 Wm−2

from −0.5 Wm−2 (Myhre, 2009). For a fire-impacted
high OC/SO2−

4 episode in CAPMEX, we observed [ω405=

0.79± 0.05, ω532 = 0.84± 0.10, ω781 =0.83± 0.11] com-
pared with mean [ω405 = 0.92± 0.05, ω532 = 0.94± 0.06,
ω781 = 0.95± 0.05] observed during two low OC/SO2−

4
episodes. Chemical composition (both absorbing and non-
absorbing, organic and inorganic components) significantly
affects aerosol optical properties particularly at shorter wave-
lengths, especially during transport. Furthermore, our empir-
ical analysis also show that coatings and processing during
transport may enhance light absorption by black carbon by
factors of greater than 3 indicating that the published esti-
mates of warming and heating rates derived from filter-based
particle absorption measurements are likely too low and need
re-examination for wavelength and composition dependence
(Ramana et al., 2010). Our results underscore the need to
explicitly parameterize aerosol composition effects on wave-
length dependent optical properties in regional chemistry and
climate models to asses their climate impacts, particularly
in the Asian outflow, whose composition is changing due to
energy growth and clean air policies. Our chemical-optical
relations and derived wavelength dependent MACs for car-
bonaceous aerosols provide empirical parameterizations that
enable such analysis by modelers.
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