
1 Coupling of HO_x, NO_x and Halogen Chemistry in the Antarctic Boundary Layer

Supplementary Information

_

Supplementary Figure 1. OH and HO₂ production / removal fluxes for the B2 scenario

1 Supplementary Table S1. Photolysis frequencies for halogen species

Reaction	Quantum Yield Note	Mean $j(x) / j(NO_2)$	Cross sections / Qm yields used	Note
$I_2 + hv$		20.3	Atkinson et al., 2007	
$Br_2 + hv$		3.45	Atkinson et al., 2007	
IBr + hv		9.10	Atkinson et al., 2007	
BrO + hv		5.41	Atkinson et al., 2007	
$BrONO_2 + hv$	$\Phi (Br+NO_3)=1$	0.160	Atkinson et al., 2007	
BrONO + hv	$\Phi (Br+NO_2) = 0.5, \Phi$	2.28	Atkinson et al., 2007	1
	(BrO+NO) = 0.5			
HOBr + hv		0.256	Atkinson et al., 2007	
IO + hv		18.3	Bloss et al., 2001	
OIO + hv	Φ (I+O ₂) = 0.05	51.6	Cox et al., 1999 / Joseph et al., 2005	2
IONO ₂ + hv	Φ (I+NO ₃) = 1	0.556	Joseph and Plane, 2007	3
$I_2O_2 + hv$	Φ (IO) = 2	0.556		4
$I_2O_3 + hv$	$\Phi (IO+OIO) = 1.0$	0.556		4
$I_2O_4 + hv$	Φ (OIO+OIO) = 1.0	0.556		4
INO ₂ + hv	$\Phi\left(I+NO_{2}\right)=1$	0.319	Sander et al., 2006	
INO + hv		3.71	Sander et al., 2006	
HOI + hv		1.12	Atkinson et al., 2007	
HI + hv		6.89×10 ⁻³	Atkinson et al., 2007	

- 3 Atkinson et al., 2007 = 2007 IUPAC Evaluation; Sander et al., 2006 = NASA/JPL Evaluation 15-06.
- 5 1: Quantum yield for BrONO photolysis assumed to be 50 % for each channel (Atkinson et
- 6 al., 2007).

4

- 7 2: OIO absorption spectrum from Cox et al. (1999) scaled to match 567 nm cross section
- 8 determined by Joseph et al. (2005). Quantum yield for photolysis assumed to be 5 %
- 9 yielding entirely $I + O_2$ following Joseph et al. (2005) and Tucceri et al. (2006); the effect of
- 10 increasing the quantum yield for production of I + O₂ to unity, as recently reported by
- 11 Gómez-Martin et al. (2009), was considered in the sensitivity study.
- 3: IONO₂ cross sections have been reported by Mossinger et al. (2002) and by Joseph et al.
- 13 (2007). The latter data are significantly smaller at long (> 360 nm) wavelengths,
- 14 corresponding to roughly one order of magnitude difference in photolysis rate. The more
- recent values of Joseph and Plane, taken from the table within their paper, are used here,
- with unit photolysis yield of $I + NO_3$ adopted; the magnitude of the $IONO_2$ cross sections is
- 17 considered in the sensitivity study.
- 4: Definitive cross-sections are not available for I₂O₂, I₂O₃ or I₂O₄. Following the laboratory
- 19 estimates of Bloss et al. (2001) and Gómez-Martín et al. (2005), and ab initio results
- 20 (Kaltsoyannis and Plane, 2008) we assume the absorption spectrum is equal to that of IONO₂
- 21 this corresponds to a midday photolysis frequency of 8×10⁻³ s⁻¹ for these species

- 1 (corresponding $j(NO_2) = 1.85 \times 10^{-2} \text{ s}^{-1}$). The sensitivity of the model results to this
- 2 assumption is evaluated in the sensitivity study section.
- 3 Supplementary Table S2. Halogen Scheme: Gas-Phase Kinetic Parameters

Reaction	Rate Expression	Reference	Note
$Br + O_3 \rightarrow BrO + O_2$	$k = 1.7 \times 10^{-11} \exp(-800/T)$	Atkinson et al., 2007	
$Br + HO_2 \rightarrow HBr + O_2$	$k = 7.7 \times 10^{-12} \exp(-450/T)$	Atkinson et al., 2007	
$OH + HBr \rightarrow Br + H_2O$	$k = 6.7 \times 10^{-12} \exp(155/T)$	Atkinson et al., 2007	
$OH + Br_2 \rightarrow HOBr + Br$	$k = 2.0 \times 10^{-11} \exp(240/T)$	Atkinson et al., 2007	
$Br + HCHO \rightarrow HBr + HCO$	$k = 7.7 \times 10^{-12} \exp(-580/T)$	Atkinson et al., 2007	
$Br + CH_3CHO \rightarrow HBr + CH_3CO$	$k = 1.8 \times 10^{-11} \exp(-460/T)$	Atkinson et al., 2007	
$Br + NO_2 \rightarrow BrONO$	$k_0 = 4.2 \times 10^{-31} (\text{T/300})^{-2.4}$	Sander et al., 2006	
	$k_{\infty} = 2.7 \times 10^{-11}, F_{c} = 0.6$		
$BrO + BrO \rightarrow Br + Br + O_2$	$k_{\infty} = 2.7 \times 10^{-11}, \ F_{\rm c} = 0.6$ $k = 2.7 \times 10^{-12}$	Atkinson et al., 2007	
$BrO + BrO \rightarrow Br_2 + O_2$	$k = 2.9 \times 10^{-14} \exp(840/T)$	Atkinson et al., 2007	
$BrO + HO_2 \rightarrow HOBr + O_2$	$k = 4.5 \times 10^{-12} \exp(500/T)$	Atkinson et al., 2007	
$OH + HOBr \rightarrow H_2O + BrO$	$k = 5.0 \times 10^{-11}$,	1
$BrO + CH_3O_2 \rightarrow HOBr + CH_2O_2$	$k = 4.6 \times 10^{-13} \exp(798/T)$	Enami et al., 2007 / Aranda et al., 1997	2
$BrO + NO \rightarrow Br + NO_2$	$k = 8.7 \times 10^{-12} \exp(260/T)$	Atkinson et al., 2007	
$BrO + NO_2 \rightarrow BrONO_2$	$k_0 = 5.2 \times 10^{-31} (\text{T}/300)^{-3.2}$	Sander et al., 2006	
BIO 1 NO2 7 BIONO2	$k_{\infty} = 6.9 \times 10^{-12} (\text{T/300})^{-2.9}, F_{c} = 0.6$	Sander et an, 2000	
$BrONO_2 \rightarrow BrO + NO_2$	$k = 2.8 \times 10^{13} \exp(-12360/T)$	Orlando and Tyndall , 1996	
$I + O_3 \rightarrow IO + O_2$	$k = 2.1 \times 10^{-11} \exp(-830/T)$	Atkinson et al., 2007	
$I + HO_2 \rightarrow HI + O_2$	$k = 2.1 \times 10^{-11} \exp(-1090/T)$	Atkinson et al., 2007	
$OH + HI \rightarrow I + H_2O$	$k = 1.6 \times 10^{-11} \exp(440/T)$	Atkinson et al., 2007	
$OH + I_2 \rightarrow HOI + I$	$k = 2.1 \times 10^{-10}$ $k = 2.1 \times 10^{-10}$	Atkinson et al., 2007	
$\frac{OI1 + I_2 \rightarrow IIOI + I}{NO_3 + I_2 \rightarrow I + IONO_2}$	$k = 2.1 \times 10^{-12}$ $k = 1.5 \times 10^{-12}$	Atkinson et al., 2007 Atkinson et al., 2007	3
$NO_3 + I_2 \rightarrow I + IONO_2$ $NO_3 + HI \rightarrow HNO_3 + I$	$k = 1.3 \times 10$ $k = 1.3 \times 10^{-12} \text{avg}(1920/T)$	Atkinson et al., 2007 Atkinson et al., 2007	3
	$k = 1.3 \times 10^{-12} \exp(-1830/T)$ $k_0 = 3.0 \times 10^{-31} (\text{T}/300)^{-1.0}$	Sander et al., 2007	
$I + NO_2 \rightarrow INO_2$	$k_0 = 5.0 \times 10^{-11}$ (1/500) $k_{\infty} = 6.6 \times 10^{-11}$, $F_c = 0.6$	Sander et al., 2000	
$INO_2 \rightarrow I + NO_2$	$k = 0.0 \times 10^{-1}$, $F_c = 0.0$ $k = 0.14 \text{ s}^{-1}$ (at 268 K)	Van den Bergh and Troe, 1976	4
$\frac{INO_2 \rightarrow I + INO_2}{INO_2 + INO_2 \rightarrow I_2 + 2NO_2}$	$k = 4.7 \times 10^{-13} \exp(-1670/T)$	Atkinson et al., 2007	+
$I + NO \rightarrow INO$ $I + NO \rightarrow INO$	$k_0 = 4.7 \times 10^{-32} (T/300)^{-1.0}$	Sander et al., 2006	
$1 + NO \rightarrow INO$		Sander et al., 2000	
$INO \rightarrow I + NO$	$k_{\infty} = 1.7 \times 10^{-11}, \ F_{\rm c} = 0.6$ $k = 0.087 \ {\rm s}^{-1} \ ({\rm at } \ 268 \ {\rm K})$	Van den Bergh and Troe, 1976	4
$INO \rightarrow I + NO$ $INO + INO \rightarrow I_2 + NO + NO$	$k = 8.4 \times 10^{-11} \exp(-2620/T)$	Atkinson et al., 2007 or JPL	-
	$k = 0.11 \times 5.4 \times 10^{-11} \exp(180/T)$	Atkinson et al., 2007 of 31 L	5
$\frac{IO + IO \rightarrow 2I + O_2}{IO + IO \rightarrow I + OIO}$	$k = 0.31 \times 3.4 \times 10^{-11} \exp(180/T)$ $k = 0.38 \times 5.4 \times 10^{-11} \exp(180/T)$	Atkinson et al., 2007 Atkinson et al., 2007	5
$OO + IO \rightarrow I + OO$		*	5
$IO + IO \rightarrow I_2O_2$	$k = 0.51 \times 5.4 \times 10^{-11} \exp(180/T)$	Atkinson et al., 2007	3
$IO + HO_2 \rightarrow HOI + O_2$	$k = 1.4 \times 10^{-11} \exp(540/T)$	Atkinson et al., 2007	
$OH + HOI \rightarrow IO + H_2O$	$k = 1.0 \times 10^{-10}$	D'II . 1 200¢	6
$IO + CH_3O_2 \rightarrow CH_3O + IOO$	$k = 2.0 \times 10^{-12}$	Dillon et al., 2006	7
$IO + NO \rightarrow I + NO_2$	$k = 7.15 \times 10^{-12} \exp(300/T)$	Atkinson et al., 2007	
$IO + NO_2 \rightarrow IONO_2$	$k_0 = 6.5 \times 10^{-31} (\text{T}/300)^{-3.5}$	Sander et al., 2006	
	$k_{\infty} = 7.6 \times 10^{-12} (\text{T}/300)^{-1.5}, F_{c} = 0.6$	W. I	0
$IONO_2 \rightarrow IO + NO_2$	$k = 2.1 \times 10^{15} \exp(-13670/T)$	Kaltsoyannis and Plane, 2008	8
$IO + NO_3 \rightarrow OIO + NO_2$	$k = 9 \times 10^{-12}$	Dillon et al., 2008	
$I + NO_3 \rightarrow IO + NO_2$	$k = 1 \times 10^{-12}$	Dillon et al., 2008	
$IO + BrO \rightarrow I + Br + O_2$	$k = 0.2 \times 1.5 \times 10^{-11} \exp(510/T)$	Atkinson et al., 2007	9
$IO + BrO \rightarrow Br + OIO$	$k = 0.8 \times 1.5 \times 10^{-11} \exp(510/T)$	Atkinson et al., 2007	
$IO + OIO \rightarrow I_2O_3$	$k = 5 \times 10^{-11}$	Gomez-Martin et al., 2007	10
$OIO + OIO \rightarrow I_2O_4$	$k = 1.5 \times 10^{-10}$	Gomez-Martin et al., 2007	10.1
$OIO + I_2O_3 \rightarrow PI_1$	$k = 1.5 \times 10^{-10}$	Gomez-Martin et al., 2007	10.1
$OIO + I_2O_4 \rightarrow PI_2$	$k = 1.5 \times 10^{-10}$	Gomez-Martin et al., 2007	10.1
$I_2O_2 + O_3 \rightarrow I_2O_3 + O_2$	$k = 1.0 \times 10^{-12}$	Saunders and Plane, 2005	10.2
$I_2O_3 + O_3 \rightarrow I_2O_4 + O_2$	$k = 1.0 \times 10^{-12}$	Saunders and Plane, 2005	10.2
$I_2O_4 + O_3 \rightarrow PI_3$	$k = 1.0 \times 10^{-12}$	Saunders and Plane, 2005	10.2
$I_2O_2 \rightarrow IO + IO$	$k = 10 \text{ s}^{-1}$	Kaltsoyannis and Plane, 2008	10.3
$12O_2 \rightarrow 1O + 1O$			
	$k = 0.1 \text{ s}^{-1}$	Kaltsoyannis and Plane, 2008	10.3
$I_{2}O_{2} \rightarrow IO + IO$ $I_{2}O_{4} \rightarrow OIO + OIO$ $NO + OIO \rightarrow IO + NO_{2}$	$k = 0.1 \text{ s}^{-1}$ $k = 1.1 \times 10^{-12} \exp(542/T)$	Kaltsoyannis and Plane, 2008 Plane et al., 2006	10.3

$BrO + DMS \rightarrow Br + DMSO$	$k = 1.4 \times 10^{-14} \exp(950/T)$	Sander et al., 2006	
$Br + DMS \rightarrow HBr + CH_3SCH_2$	$k = 9.0 \times 10^{-11} \exp(-2390/T)$	Sander et al., 2006	12
$IO + DMS \rightarrow I + DMSO$	$k = 1.2 \times 10^{-14}$	Sander et al., 2006	

- 1 Atkinson et al., 2007 = 2007 IUPAC Evaluation; Sander et al., 2006 = NASA/JPL Evaluation 15-06.
- 2 Supplementary Table S3. Heterogeneous reaction probabilities

,

Species	Reaction Probability γ	Reference
HONO	0.04	JPL 15-06
PNA	0.1	JPL 15-06
HNO ₃	0.1	JPL 15-06
N_2O_5	0.04	JPL 15-06
HO ₂	0.2	Jacob, 2000
CH ₃ O ₂	0.04	Jacob, 2000
HI	0.2	JPL 15-06
HBr	0.2	JPL 15-06
HOI	0.5	Mossinger and Cox, 2001 /
		Braban et al. (2007) / JPL 15-06
HOBr	0.6	JPL 15-06
BrONO ₂	0.2	JPL 15-06
IONO ₂	0.2	Assumed as BrONO ₂
INO ₂	0.1	Assumed
BrNO ₂	0.1	Assumed
Ю	0.5	Assumed
OIO, I ₂ O ₂ , I ₂ O ₃ , I ₂ O ₄	1	Assumed
PI_n	1	Assumed

Notes to Halogen Reaction Scheme (Supplementary Tables 2, 3)

- 3 Other reactions considered, but discounted as their effects were found to be negligible for
- 4 this environment, were:
- 5

1

2

- 6 -Termolecular I atom recombination
- 7 -Halogen atom / molecule reactions $(I + Br_2, Br + I_2, I + IBr, Br + IBr)$
- 8 -Halogen atom / halogen monoxide reactions (I + BrO, Br + IO)
- 9 -Oxygen atom / halogen reactions $(O + I_2, O + Br_2, O + IO, O + BrO)$
- -Halogen monoxide / ozone reactions (IO + O_3 , BrO + O_3)
- 11

12 Specific Notes

- 13
- 1: OH + HOBr Rate constant estimated with reference to OH + HOCl, O + HOCl and O +
- 15 HOBr.
- 16
- 2: Temperature-dependent kinetics for BrO + CH₃O₂ taken from Enami et al. (2007);
- products assumed to be HOBr + CH₂O₂ following Aranda et al. (1997). Within the model
- 19 CH₂O₂ dissociates to CO + H₂O (Mariq et al., 1994).
- 20
- 21 3: I₂+NO₃. Products assumed to be I+IONO₂ following Atkinson et al. (2007) on enthalpy
- 22 arguments. Effect of alternative product channel (IO + INO₂, as adopted by Saiz-Lopez et
- al., 2008) considered in sensitivity study.
- 24
- 4: INO and INO₂ thermal decomposition calculated via the formation rate constants given,
- 26 plus temperature-dependent equilibrium constant expressions from van den Burgh and Troe,
- 27 1976: $K_{eq}(I + NO \leftrightarrow INO) = 10^{-5.70} \times exp(9160/T)$ and $K_{eq}(I + NO_2 \leftrightarrow INO_2) = 10^{-10}$
- $28 = 6.43 \times \exp(9560/T)$, both in atm⁻¹.

- 2 5: IO + IO: Overall rate constant and OIO+I channel from Atkinson et al. (2007); branching
- 3 ratio for $2I + O_2 / I_2O_2$ channels from Bloss et al. (2001). See also comments below (note
- 4 10.3).

5

- 6 6: OH + HOI Rate constant estimated with reference to OH + HOCl, O + HOCl and O +
- 7 HOBr.

8

- 9 7: Base-case for the IO + CH₃O₂ reaction is "slow" kinetics ($k = 2 \times 10^{-12}$; Dillon et al., 2006)
- and formation of CH₃O + IOO (i.e. the CH₃OOOI intermediate, likely decomposing to
- $CH_3O + IOO$ and hence $HCHO + HO_2 + I + O_2$ in the atmospheric boundary layer) with unit
- 12 yield. Sensitivity studies described in the text consider the potential impact of a higher rate
- 13 constant (e.g. Bale et al., 2005; Enami et al., 2007) and alternative product channels, e.g. via
- the CH₃OOIO channel to CH₃O + OIO (Drougas and Kosmas, 2007).

15

- 8 Thermal decomposition rate reported by Kaltsoyannis and Plane (2008) adopted; this is
- 17 based upon revised RRKM analysis coupled to laboratory kinetic data for the forward
- 18 reaction obtained by Allen and Plane (2002), and supersedes the decomposition rate
- 19 determined in a similar manner in the earlier paper.

20

- 9: Branching ratio for IO + BrO from Atkinson et al. (2007) in combination with Rowley et
- al. (2001); note approach adopted neglects possible increase in atomic channels at reduced
- 23 temperature.

- 25 10: Higher Iodine Oxides
- 26 In addition to thermal reactions with other chemical families (NO_x, BrO_x etc.), iodine oxides
- are thought to polymerise through a series of addition reactions potentially involving IO,
- OIO, I₂O₂ and higher iodine oxides. Considerable laboratory evidence exists for the near-
- 29 gas kinetic removal of OIO in fast iodine kinetics studies (e.g. Bloss et al., 2001; Ingham et
- al., 2000), and also for the formation of particles of bulk composition I_2O_5 / I_4O_9 (e.g.

1 Burkholder et al., 2004; McFiggans et al., 2004), but details of the nucleation process are far 2 from understood. In this paper, we adopt an iodine source selected to replicate the observed 3 levels of IO subject to the chemical mechanism, which must therefore include a 4 representation of the process for the removal of active iodine into the condensed phase. 5 Whilst given our current level of understanding any specific mechanism is unlikely to be totally correct, the modelled effects of iodine chemistry upon HO_x and NO_x (the focus of the 6 7 paper) should be robust as the levels of IO (which effectively constrains most of the other 8 iodine-inorganic chemistry interactions) match those observed. The details of the 9

mechanism adopted for removal of active iodine into the condensed phase will however

impact upon the iodine source required to generate a given level of IO; this is considered

11 further in the sensitivity studies.

12

10

Here we adopt a mechanism drawn from recent laboratory and theoretical studies, in which two routes to higher iodine oxides are considered: Sequential addition of ozone to I₂O₂/I₂O₃/I₂O₄ (Saunders and Plane, 2005), and polymerisation of OIO (Gomez-Martin et al.,

16 2007). We consider any species above I₂O₄ to be thermally and photolytically stable on the

timescale of these simulations, i.e. to irreversibly incorporate into particulate iodine: PI₁,PI₂

and PI₃, which may in reality be identified with I₃O₅ or I₂O₅ + I, I₃O₆ or I₂O₅ + IO, and

 $I_2O_5+O_2$ respectively. We also consider the thermal stability of I_2O_2 , I_2O_3 and I_2O_4 , based

upon the calculations of Kaltsoyannis and Plane (2008), and the photolysis of OIO, I₂O₂,

 I_2O_3 and I_2O_4 as described above. (These assumptions are explored further in the sensitivity

22 study).

23

10.1 Gomez-Martin et al. (2007) infer limits for an association reaction between OIO and small (n = 1 - 4) OIO polymers of $(1.2 - 3) \times 10^{-10}$ molec⁻¹cm³s⁻¹. Here we choose a mid-

range value of 1.5×10^{-10} molec⁻¹cm³s⁻¹, and apply this to the reaction of OIO with itself,

 I_2O_3 and I_2O_4 .

28

29 10.2 : Oxidation of I_2O_2 , I_2O_3 and I_2O_4 by ozone. The rate constant adopted $(1\times10^{-12} \text{ molec}^{-1})$

30 ¹cm³s⁻¹) is based upon the analysis of Saunders and Plane (2005), although recent

31 calculations (Kaltsoyannis and Plane, 2008) indicate that the reaction may be slower, and the

- 1 calculated short thermal lifetime for I₂O₂ indicates that IO/OIO recombination is probably
- 2 the dominant route to I_2O_3 / I_2O_4 in the atmosphere).

- 4 10.3 Kaltsoyannis and Plane calculate the lifetimes of I₂O₂, I₂O₃ and I₂O₄ with respect to
- 5 thermal decomposition to be of the order of 0.1, 10⁸ and 10 seconds respectively (293 K);
- 6 appropriate (temperature-independent) decomposition rates for I₂O₂ and I₂O₄ are therefore
- 7 included. I₂O₂ is assumed to be IOIO; IOOI is found to dissociate promptly.

8

- 9 11: The reaction of OIO with OH is assumed to form HIO₃, which is stable (Plane et al.,
- 10 2006), and is assumed to contribute to particulate iodine: PI₄.

11

12: DMS-Br adduct channel neglected.

13

- 14 In addition to the halogen and DMS scheme, the MCM (version 3.1) kinetics describing the
- 15 fate of O(¹D) atoms were updated to the JPL (Sander et al., 2006) rate constants:

$O(^{1}D) + O_{2} \rightarrow O(^{3}P) + O_{2}$	$k = 3.3 \times 10^{-11} \exp(55/T)$	Sander et al., 2006
$O(^{1}D) + N_{2} \rightarrow O(^{3}P) + N_{2}$	$k = 2.15 \times 10^{-11} \exp(110/T)$	Sander et al., 2006
$O(^{1}D) + H_{2}O \rightarrow OH + OH$	$k = 1.63 \times 10^{-10} \exp(60/T)$	Sander et al., 2006